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Lanneau, Alba Málaga et Thierry Monteil pour avoir accepté de faire partie de mon jury
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Coulon pour m’avoir invité aux Fabrikathons qu’ils organisaient, et qui m’ont permis de
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qui j’espère qu’il reste encore du chemin à parcourir. J’aurai également une pensée pour les
anciens camarades de l’ENS Lyon : Lucas, Vincent, Colin mais aussi Léo, Pedro, Caroline
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géographique, ni quelconque autre difficulté, qui me découragera. Je te remercie infiniment
pour m’avoir fait confiance, pour tes conversations authentiques, pour tout ton amour.
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Résumé

Cette thèse porte sur les plongements isométriques PL de surfaces plates de petit genre
(g = 0, 1, 2). Nous y présentons trois résultats originaux. Le premier concerne une méthode
générique due à Burago et Zalgaller, détaillée dans leur article de 1995, pour plonger
PL isométriquement une surface polyédrale quelconque. Alors qu’une des étapes de
cette méthode repose sur le procédé non constructif de Nash-Kuiper, nous donnons une
implémentation effective dans le cas des tores plats. La méthode de Burago et Zalgaller,
bien que générique, ne permet pas de réaliser de manière uniforme, c’est-à-dire avec un
nombre borné de sommets, une famille de surfaces polyédrales - par exemple la famille
des tores plats. Nous construisons dans un second temps une triangulation universelle
pour les tores plats, c’est-à-dire une triangulation T du tore qui, pour tout tore plat,
admet une réalisation géométrique isométrique à ce tore plat, affine sur chaque triangle
de T . Enfin, nous exhibons des plongements isométriques PL relativement simples de
surfaces de translation de genre 2. Ces modèles peuvent être aisément utilisés à des fins
de visualisation, et nous avons ainsi pu en réaliser par impression 3D ou par pliage papier.
De manière générale, les surfaces de translation forment des espaces, dits de modules,
stratifiés par le genre et la nature des singularités. La compréhension de ces espaces
faisant intervenir des notions mathématiques délicates, nous avons choisi de présenter
soigneusement les concepts utilisés dans le second chapitre. En genre 2, il n’y a que deux
strates : H(2) et H(1, 1). Bien que nos modèles pour H(2) ne recouvrent pas la totalité de
la strate, ils permettent de réaliser un ouvert de H(2) relativement important, comme il
est décrit dans cette thèse.



Abstract

This thesis deals with PL isometric embeddings of flat surfaces of small genus (g = 0, 1, 2).
We present inside three original results. The first one is about a generic method due to
Burago and Zalgaller, which is detailed in their article of 1995, in order to PL isometrically
embed any polyhedral surface. Although one of the steps of this method is based on the
non constructive Nash-Kuiper process, we give an effective implementation in the case of
flat tori. The method of Burago and Zalgaller, though generic, does not allow to uniformly
realize, namely with a bounded number of vertices, a family of polyhedral surfaces - for
instance the family of flat tori. We build in a second time a universal triangulation for
flat tori, i.e. a triangulation T of the torus which, for every flat torus, admits a geometric
realization isometric to this flat torus, linear in restriction to each triangle of T . Finally,
we exhibit relatively simple PL isometric embeddings of genus 2 translation surfaces. This
models can be easily used to visualization ends, and we were able to realize some ones by
3D printing or by paper folding. Generally, translation surfaces form spaces called moduli
spaces, stratified by the genus and the nature of the singularities. Non trivial notions are
involved to understand these spaces, and we chose to thoroughly present the concepts used
in the second chapter. In genus 2, there is only two strata: H(2) and H(1, 1). Whereas
our models for H(2) do not cover the entire strarum, they permit to realize a relatively
important open subset of H(2), as we describe in this thesis.
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Preface

This thesis gathers works on PL isometric embeddings of flat surfaces of small genus.
While the mathematical background needed to understand this report is modest, it relies
however on deep mathematical concepts about translation surfaces also known as Abelian
differentials, and we chose to present in the Preliminaries a complete and almost self-
contained introduction to our research field, often recalling well known definitions and
constructions. The reader already aware of these mathematical foundations may skip this
introductory chapter without inconvenience, going straight to chapter 3 for the state of the
art, or to chapters 4, 5, 6 for our contribution, while the non familiar reader can benefit
from our attempt to explain as well as possible such a rich and interesting theory, referring
to the bibliography to deepen the discussion we just touch upon. These mathematical
concepts turn out, though, to be if not essential, at least very useful to finalize the results
presented in this thesis. Indeed, while the genus 1 case appeared to be relatively easily
manageable, the case of flat surfaces of genus 2 is much harder and seems to rely on
subtle theories that we did not yet fully exploit. In practice, we succeeded to reduce
most of our problems to elementary geometry that nonetheless required a great deal of
inventiveness. While at the beginning of this thesis, the experimental and algorithmic
aspect was dominant, the need of profound mathematics became necessary and an entire
program has emerged: to understand the geometry and topology of the stratum H(2) and
its compactifications in order to find a universal triangulation for this stratum. Obvious
generalizations to other strata and genera then arise. We hope our humble work will be
useful to future researchers in order to complete the program that is taking shape.
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Introduction en français

Problème du plongement isométrique (PL)
Une surface est un espace topologique qui ressemble localement au plan euclidien de
dimension 2, R2. Un plongement d’une surface topologique dans une autre est une
représentation fidèle de l’espace de départ dans l’espace d’arrivée.

On peut munir certains espaces topologiques d’une métrique de longueur qui permet
de mesurer la longueur des chemins. Une isométrie entre deux surfaces topologiques est
une application continue qui préserve la longueur des chemins.

Les notions précédentes s’adaptent dans le cas où la surface topologique admet une
structure différentielle supplémentaire.

Dans cette thèse, nous nous intéresserons principalement au cas des surfaces orientables.
Le fait que toute surface orientable se plonge dans R3 est un résultat bien connu. Le
théorème de plongement de Whitney (1869) assure que toute variété de dimension n se
plonge dans R2n.

Le théorème de plongement de Nash, démontré en 1954, et amélioré par Kuiper l’année
suivante, affirme quant à lui que toute surface riemannienne (orientable), c’est-à-dire une
surface lisse munie d’une métrique riemannienne, admet un plongement isométrique dans
l’espace euclidien E3. C’est une amélioration importante du théorème de Whitney car, non
seulement la structure différentielle, mais aussi la géométrie intrinsèque de la surface peut
être réalisée dans E3. Cependant, le théorème de Nash-Kuiper n’est pas constructif : l’idée
est de partir d’une application contractante, puis d’ajouter une suite infinie d’ondelettes
de manière à s’approcher de la métrique cible, et de finalement l’atteindre à la limite.
Ainsi, l’équipe Hévéa a réussi à produire un plongement isométrique C1 du tore carré plat
dans E3 [BJLT13].

Nos travaux portent quant à eux sur les structures plates. Une surface polyédrale
est une surface obtenue par recollement de polygones euclidiens le long de leurs arêtes,
deux arêtes identifiées devant être de même longueur. En général, il n’est pas possible de
recoller ces polygones dans E3, afin d’obtenir une surface plongée, sans introduire de plis.
Une application f d’une surface polyédrale dans E3 est dite linéaire par morceaux (ou
PL) si les polygones de la surface polyédrale source peuvent être triangulés de manière à
ce que f soit affine, c’est-à-dire préserve le barycentre, en restriction à chaque triangle.

Dans un article relativement récent [BZ95], Burago et Zalgaller montrent l’existence de
plongements isométriques PL pour toute surface polyédrale orientable. Leur approche est la
suivante : ils montrent d’abord comment plonger de manière PL et isométrique un triangle
dans le voisinage d’un triangle plus petit. Cette construction élémentaire n’est possible qu’à
condition que le triangle à plonger et sa plus petite version satisfassent certaines contraintes
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géométriques. Dans une seconde étape, ils appliquent cette construction élémentaire à
chaque triangle d’une triangulation aiguë de la surface polyédrale à plonger. Ils doivent
traiter les singularités de manière à part afin d’obtenir le plongement isométrique désiré.
De manière remarquable, leur construction repose sur le théorème de Nash-Kuiper.

En général, cette méthode recquiert un nombre très important de triangles : environ
170 000 pour le tore carré plat et plus de 2 millions pour le tore héxagonal lors de nos
expérimentations.

Triangulation universelle pour une famille de surfaces
Soit F une famille de surfaces polyédrales admettant la même surface topologique S
sous-jacente. On peut penser, par exemple, à la famille des tores plats bidimensionnels.
Nous savons, qu’individuellement, chaque surface polyédrale de F peut être réalisée
fidèlement dans E3. Afin d’apporter une notion ”d’uniformité” au sein de ces réalisations,
nous introduisons la définition suivante. Une triangulation universelle pour F est une
triangulation abstraite T de S (un complexe simplicial de dimension 2) telle que, pour
toute surface Σ de F , T admet une réalisation géométrique isométrique à Σ, la réalisation
étant affine sur chaque triangle de T .

Intuitivement, T est une triangulation universelle pour F si T réalise toute surface de
F sans besoin de subdiviser aucun triangle de T .

Problèmes étudiés dans cette thèse
Dans cette thèse, nous présentons trois résultats qui ont trait aux plongements isométriques
de surfaces polyédrales. Le premier est une implémentation explicite de la méthode de
Burago et Zalgaller dans le cas des tores plats. Le second est une preuve contructive
de l’existence d’une triangulation universelle pour les tores plats. Le dernier, dont nous
espérons une utilité future dans une éventuelle preuve de l’existence de triangulations
universelles pour d’autres familles de surfaces polyédrales, est une détermination explicite
de plongements isométriques PL pour une large famille de surfaces polyédrales de genre 2.

Implémentation effective de la méthode de Burago et Zalgaller
dans les cas des tores plats
La méthode de Burago et Zalgaller devient beaucoup plus simple dans le cas des tores
plats que dans le cas général, vu qu’un tore plat n’admet aucune singularité. Étant donné
un tore plat T, la méthode comporte les étapes suivantes :

(i) calculer une triangulation de T dont les triangles sont tous aigus,

(ii) calculer un plongement quasi-conforme, f , de T dans E3,

(iii) Subdiviser de manière uniforme la triangulation aiguë de T de manière à ce que la
construction élémentaire à laquelle nous avons fait allusion à la fin de la première
section soit possible pour toute paire (T, F (T )), où T parcourt les triangles de la
triangulation raffinée T , et F est l’approximation polyédrale de f définie sur T ,
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(iv) appliquer finalement la construction élémentaire à chaque paire (T, F (T )).

Dans le cas des tores plats, l’étape (i) devient facile, cf section 4.1. Pour l’étape (ii),
nous avons choisi d’utiliser une construction due à Pinkall [Pin85] qui permet de plonger
isométriquement n’importe quel tore plat dans E4. Il suffit ensuite de composer cette
isométrie avec une projection stéréographique afin d’obtenir le plongement conforme voulu.

En particulier, cette méthode nous a permis, entre autres, d’obtenir de réalisations PL
du tore carré plat, et du tore hexagonal.

Triangulation universelle pour les tores plats
Il est vain de croire que la méthode générique de Burago et Zalgaller puisse permettre
de construire une triangulation universelle, du fait que la triangulation associée à un tel
plongement dépend de manière importante de la géométrie du tore plat que l’on veut
réaliser.

Nous choisissons d’utiliser deux constructions bien plus simples. La première est une
méthode due à Zalgaller [Zal00] pour plonger des tores plats longs. Nous montrons que
tout tore plat long admet une telle réalisation, tout en donnant des bornes explicites. La
seconde est une (re-)découverte par Arnoux, Lelièvre et Màlaga de contructions appelées
diplotores. Grâce à trois familles de diplotores, nous recouvrons les tores plats courts.

Il reste à superposer les deux triangulations correspondant aux tores plats longs et
courts, ce afin d’obtenir finalement une triangulation universelle pour les tores plats.

Plongements isométriques PL de certaines surfaces de H(2) et
H(1, 1)
Nous passons ensuite aux surfaces polyédrales de genre 2. Plus spécifiquement, nous
considérons la famille H(2) des surfaces polyédrales obtenues par recollement de 3 pa-
rallélogrammes selon le schéma donné en Figure 1. Le recollement partiel défini par σ1 et
σ2 résulte en un polygone en forme de L épaissi, et nous nous référons à ce patron comme
une décomposition en L.

Nous nous intéressons d’abord au cas où le parallélogramme central est rectangulaire.
Nous donnons de simples réalisations pour de tels rectangles centraux qui sont de plus
explicites. Nous plongeons ensuite les deux parallélogrammes périphériques qu’il reste, qui
sont topologiquement des cylindres, grâce aux outils développés par Zalgaller dans [Zal00]
afin de plonger un prisme droit selon une ligne brisée assez longue. Il est à noter que cette
méthode impose une longueur minimale pour les parallélogrammes périphériques. Nous
généralisons cette méthode à des déformations non rectangulaires du rectangle central.
De cette manière, nous sommes en mesure de montrer l’existence d’une triangulation
universelle pour un voisinage ouvert des surfaces de H(2) admettant une décomposition en
L où le parallélogramme centrale est rectangulaire et les parallélogrammes périphériques
assez longs.

6



σ1

σ2parallélogramme central

parallélogramme périphérique

parallélogramme périphérique

Figure 1 : Recollement typique de trois parallélogramme résultant en une surface de
H(2).
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Chapter 1

Introduction

1.1 (PL) Isometric embedding problem
A surface is a topological set such that every point admits a neighborhood which looks
like the two-dimensional Euclidean plane R2. An embedding between two topological
surfaces is a faithful representation of the source space in the arrival space.

Some topological surface can be endowed with a length metric which in turn enables
to measure lengths of paths. An isometry between two metric topological surfaces is a
continuous map that preserves lengths of paths.

If a topological surface is given a smooth structure, all the previous notions have a
smooth version.

In this thesis, we will be mainly interested in orientable surfaces. It is well known that
every orientable surface embeds into R3. The more general Whitney embedding theorem
(1869) ensures that every manifold of dimension n embeds into R2n.

The theorem of embedding of Nash, demonstrated in 1954 and improved by Kuiper
the year after, states that every (orientable) Riemannian surface, that is a smooth surface
endowed with a smooth metric, admits a C1 isometric embedding into the Euclidean
space E3. It is a strong improvement over the previous Whitney theorem as, not only the
differential structure, but also the intrinsic geometry of the surface can be realized in E3.
Nonetheless, the Nash-Kuiper theorem is not constructive: the idea is to begin with a
contracting map, and to add an infinite sequence of wavelets in order at each step to get
closer to the aimed metric, and to finally reach it at the limit.
Thanks to more recent works, the Hévéa team succeeded in producing a C1 isometric
embedding of the square flat torus into E3 [BJLT13].

In this work, we shall focus on flat structures. A polyhedral surface is a surface
obtained by gluing Euclidean plain polygons along edges which must be of the same length.
In general, it is not possible to glue these polygons in E3 in order to obtain an embedded
surface. A map f from a polyhedral surface into E3 is said to be piecewise linear (or
PL in short) if the polygons of the polyhedral surface can be subdivided into triangles so
that f is linear, that is preserves the barycenter, in restriction to each triangle.

In a relatively recent article [BZ95], Burago and Zalgaller show the existence of
PL isometric embeddings for every orientable polyhedral surface. Their approach is
the following: they first show how to embed PL isometrically a given triangle in the
neighborhood of a smaller triangle. This elementary construction is only possible when
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the triangle and its smaller version satisfy some geometric conditions. In a second step,
they apply this construction to each triangle of an acute triangulation of the polyhedral
surface we want to embed. They need to take care of singularities, to obtain the desired
isometric embedding. Notably, their construction relies on the Nash-Kuiper theorem.

In general, this method requires a huge number of triangles, about 170,000 for the square
flat torus and more than 2 millions for the hexagonal flat torus in our experimentations.

1.2 Universal triangulation for a family of surfaces
Let F be a family of polyhedral surfaces with the same underlying topological surface
S. One may think, for instance, of the family of 2-dimensional flat tori. We know that,
individually, every polyhedral surface in F can be realized faithfully in E3. In order to
grasp some kind of ”uniformity” in these realizations, we introduce the following definition.
A universal triangulation for F is an abstract triangulation T of S (a 2-dimensional
simplicial complex) such that, for every surface Σ in F , T admits a geometric realization
that is isometric to Σ, the realization being linear on each triangle of T .

Roughly speaking T is a universal triangulation for F if T realizes every surface in F
without the need of subdividing any triangle in T .

1.3 Problems addressed in this thesis
In this thesis, we present three results on isometric embeddings of polyhedral surfaces. The
first one is an explicit implementation of the method of Burago and Zalgaller in the case
of flat tori. The second one is a constructive proof of existence of a universal triangulation
for flat tori. The final one, which we hope will be useful to prove the existence of universal
triangulations for other families of polyhedral surfaces, is the explicit computation of PL
isometric embeddings for a large family of polyhedral surfaces of genus 2.

1.3.1 Implementation of the method of Burago and Zalgaller in
the case of flat tori

The method of Burago and Zalgaller becomes much easier in the case of a flat torus than
in the general case, as flat tori do not present any singularity. Given a flat torus T, the
method comprises the following steps:

(i) compute a triangulation of T whose triangles are acute,

(ii) compute an almost conformal embedding, f , of T in E3,

(iii) uniformly refine the acute triangulation of T in order for the elementary construction
alluded to at the end of Section 1.1 to be possible for every pair (T, F (T )), where T
is a triangle of the refined triangulation T and F is the polyhedral approximation
of f defined on T ,

(iv) finally, apply the elementary construction to each pair (T, F (T )).
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In the case of a flat torus, step (i) becomes easy, see Section 4.1. For step (ii), one can
use the construction of Pinkall [Pin85] that gives an isometric embedding for any flat
torus in E4. It suffices then to compose this isometry with a stereographic projection to
obtain the desired conformal embedding.

In particular, this method allows us to obtain PL realizations of the square flat torus,
and the hexagonal torus, among others.

1.3.2 Universal triangulation for flat tori
As previously stated, there is no hope to use the method of Burago and Zalgaller if one
wants to obtain a universal triangulation for flat tori, as the triangulation associated to
such an embedding depends heavily on the geometry of the flat torus we want to embed.

We choose to use two simple constructions. The first one is a method due to Zalgaller
[Zal00] to embed long flat tori. We show that every long enough flat torus admits such a
realization, and we give explicit bounds. The second one is a (re-)discovering by Arnoux,
Lelièvre and Málaga [ALM21] of a construction called diplotorus. Thanks to three families
of diplotori, we were able to cover short flat tori.

It remains to overlay the two triangulations corresponding to the long and the short
flat tori, to obtain a universal triangulation for flat tori.

1.3.3 PL isometric embeddings of some surfaces in H(2) and
H(1, 1)

We now turn to families of polyhedral surfaces of genus 2. Specifically, we consider the
family H(2) of polyhedral surfaces obtained by gluing 3 parallelograms according to the
gluin pattern below in Figure 2. The partial gluing defined by σ1 and σ2 gives a polygon
with the shape of a thick L and we refer to this scheme as an L decomposition.

We first focus on the case where the central parallelogram is a rectangle. We provide
a simple and explicit embedding for such central rectangles. Then we embed the two
remaining peripheral parallelograms, which are topological cylinders, thanks to Zalgaller’s
machinery developed in [Zal00] to embed right prism according to a long enough broken
line. Note that this method requires that the two peripheral parallelograms are long enough.
We extend this method to non rectangular deformations of the central rectangle. This way
we are able to show the existence of a universal triangulation for an open neighborhood
of surfaces in H(2) admitting a L decomposition where the central parallelogram is a
rectangle and with long enough peripheral parallelograms.
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σ1

σ2central parallelogram

peripheral parallelogram

peripheral parallelogram

Figure 2: Typical gluing of three parallelograms resulting in a surface in H(2).
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Chapter 2

Preliminaries

Résumé en français. Nous présentons dans ce chapitre les notions mathématiques
nécessaires à la bonne compréhension du contenu de cette thèse. Après un rappel bref des
définitions standards, nous nous concentrons sur les surfaces topologiques, polyédrales,
différentiables, de Riemann puis enfin les surfaces de translation, ainsi que sur leurs espaces
de modules et de Teichmüller.
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In this chapter we present the mathematical notions necessary for a good understanding
of the content of this thesis. After a brief reminder of the standard definitions, we focus on
(topological, polyhedral, differential, Riemann) surfaces then finally translation surfaces,
as well as their moduli spaces and Teichmüller spaces.

2.1 Basics
Topology. Given two topological spaces X and Y , a homeomorphism φ : X → Y
between X and Y is a bicontinuous bijection that is a continuous bijection whose inverse
is also continuous. A map f : X → Y is a topological embedding if its corestriction
X → f(X) is a homeomorphism where f(X) is given the topology induced by Y . A
topological immersion ι : X → Y is a map that is locally an embedding: every point
in X admits a neighborhood U such that ι|U is an embedding. An immersion is not
necessarily injective. Moreover, an injective immersion is not always an embedding: for
instance the immersion

ι : (−π, π) → R2

t 7→ (sin(2t), sin(t))

is injective, but not an embedding as Figure 3 shows. However, an injective immersion of
a compact space is always an embedding.

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Figure 3: A lemniscate immersed in R2 but not embedded.

A topological manifold M of dimension n is a second countable, topological Haus-
dorff space that looks like Rn locally: every point in M admits a neighborhood that is
homeomorphic to Rn. In turn, a second countable topological space is a topological space
M that admits a countable base for its topology: there exists a countable family (Ui)i≥1 of
open subsets such that any open set in M can be written as a union of Ui. A topological
manifold M admits then a countable atlas ((Ui, φi)) that is a countable open cover (Ui)
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together with homeomorphisms φi : Ui → φi(Ui) ⊆ Rn called local charts. Every chart
φi can be written φi = (x1, ..., xn) with xi : Ui → R continuous. The xi are called local
coordinates. That is why a chart is also called a system of local coordinates.

A topological manifold M of dimension n with boundary is a second countable,
topological Hausdorff space that locally looks like Hn := {x = (x1, ..., xn) : xn ≥ 0}: every
point x ∈ M admits a neighborhood that is homeomorphic to an open subset of Hn. One
can show that if a chart φ maps p ∈ M into ∂Hn, then so does every other chart defined at p.
Hence M = M̊ ∪ ∂M , where ∂M := {p ∈ M : ∃φ chart s.t. φ(p) ∈ ∂Hn} is the boundary
of M and M̊ := M \ ∂M is the interior of M . One can easily see that a homeomorphism
between two topological surfaces with boundary induces a homeomorphism between their
boundaries.

Metrics. A metric space (X, d) is a topological space that is endowed with a metric
d : X ×X → R+ satisfying the following axioms:

• symmetry: d(x, y) = d(y, x) for all x, y ∈ X,

• separation: d(x, x) = 0 for all x ∈ X,

• triangular inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

For our purpose, we will deal with possibly infinite distances, meaning that d satisfies the
three preceding axioms, but can take the value ∞. Metric spaces are quite convenient,
but not enough for our purpose. We rely on a slightly more restricted notion. To this
end we follow the book [BBI+01]. A length structure on a topological space X is a
map ℓ : P(X) → R+ ∪ {∞} satisfying the following axioms, where P(X) ⊆ C(X) :=
{γ : [a, b] → X continuous} are the continuous paths on X - typically P(X) = C(X) or
P(X) = C1

pw the set of piecewise C1 paths on X when X is a differential manifold,

• ℓ(γ) = 0 if γ is constant,

• juxtaposition: if γ0 : [a, b] → X and γ1 : [b, c] → X are such that γ0(b) = γ1(b) then,

denoting γ0 · γ1 : t ∈ [a, b] 7→ γ0(t)
t ∈ [b, c] 7→ γ1(t)

, ℓ(γ0 · γ1) = ℓ(γ0) + ℓ(γ1),

• restriction: for all γ : [a, b] → X, t 7→ ℓ(γ|[a,t]) is continuous,

• reparametrization independence: if γ : I → X and ϕ : t ∈ J 7→ αt+β ∈ I is a linear
bijection, then ℓ(γ ◦ ϕ) = ℓ(γ),

• compatibility: for all x ∈ X and all open neighborhood U containing x, there exists
r > 0 such that for all γ : [a, b] → X with γ(a) = x and γ(b) ̸∈ U satisfies ℓ(γ) > r.

Given a length structure on X, one can define on (X, ℓ) the shortest path metric:

d(x, y) = inf
γ ∈ P(X)

γ(a) = x, γ(b) = y

ℓ(γ).

Every metric space can be given a length structure. Indeed, if (X, d) is a metric space,
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we can define a length structure by giving to ℓ(γ) the value of the supremum, over
all the subdivision a = a0 < ... < an = b of [a, b] the interval of definition of γ, of
n∑
i=1

d (γ(ai−1), γ(ai)). This endows X with an other metric induced by the length structure.

We denote d̂ the metric induced by this length structure. We say that the metric space X
is a length space if d = d̂.

Given a length space X we can thus talk about the length of a path, and the distance
between two points that is equal to the shortest path length between the two points. An
isometry f : X → Y between two length spaces X and Y is a length preserving continuous
map: ℓY (f ◦ γ) = ℓX(γ) for all γ ∈ P(X).

Quotient topology, gluing and link with metric. Let R be an equivalence relation
on a topological space X. One can consider the canonical projection π : X → X/R which
associates to an element in X its class under R. By definition, the quotient topology on
X/R is the coarsest topology on X/R that makes the projection π continue. Open sets of
X/R are thus subset V ⊆ X/R such that π−1(V ) is an open set in X.

An interesting class of quotient topologies are given by the topology obtained by
gluing sides of polygons. Let P a family of plane Euclidean polygons. We denote by
E = E(P) the set of all edges of polygons in P. Let σ : E → E be a pairing of the
edges of polygons in P, that means σ is an involution with σ(e) ̸= e for every edge e.
We suppose given, for each pair (e, σ(e)), a homeomorphism fe : e → σ(e) such that
fσ(e) = f−1

e . Then the gluing of the family P according to the pairing σ with gluing maps
(fe)e∈E is the topological quotient space ⊔

P∈P
P/ ∼ where ∼ is the equivalence relation

generated by p ∼ fe(p) for all p ∈ e and all paired edge e. By generated, we mean the
smaller equivalence relation containing the previous one.
Such a gluing admits a natural distance making it a length space. First note that the
disjoint union admits a natural metric given by:

d : (x, y) 7→
{
dR2(x, y) if x, y ∈ P

∞ if x, y belong to distinct polygons .

Note that we allow d to take infinite values.
Let (X, d) be a topological space endowed with a semi-metric d, i.e. a map d :

X ×X → R+ that satisfies the symmetry and triangular inequality axioms of distances
but possibly not the separation axiom. Define the equivalence relation Rd by: xRdy if
d(x, y) = 0. The map d passes to the quotient over X/Rd. We denote by d̄ this quotient,
that is easily seen to be a metric.

Given a quotient X/ ∼ of a metric space (X, d), we can define a semi-metric on X/ ∼
by

d∼(x, y) := inf
k∑
i=0

d(pi, qi) (2.1)

where the infimum is taken aver all choices of (pi)i=0,...,k and (qi)i=0,...,k such that p0 ∼ x,
qi ∼ pi+1 for i = 1, ..., k − 1 and qk ∼ y.
The space (X/Rd∼ , d∼) is a metric space called the quotient metric space of X under
∼.
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Figure 4: Example of a 3 dimensional simplicial complex - Wikipedia.

Suppose now that X is a length space. Recall that we denoted d the metric induced by
the length structure, while d∼ is given by (2.1). Let us consider its quotient metric space
(X/Rd∼ , d∼). Note first that d∼ ≤ d. Hence every d-continuous curve is d∼-continuous,
and d̂∼ ≤ d̂ = d. Now if (pi)i=0,...,k and (qi)i=0,...,k are as in the definition of d∼, one can
construct a path from x to y whose length is almost equal to

k∑
i=0

d(pi, qi) by concatenating
almost shortest paths from qi to pi+1. The projection of this concatenations in X/ ∼ is
continuous as qi ∼ pi+1 . Thus, the length of such a path can be made arbitrarily close to
k∑
i=0

d(pi, qi), and finally to d∼(x, y). Hence d̂∼ = d∼ and X/Rd∼ is a length space.
The interconnection between these two quotients is not obvious. For example, for

X = [0, 1] and x ∼ y if x = y or x, y ∈ Q, we have that the topology of X/ ∼ is non
trivial, while X/Rd∼ is a point. Even if X/ ∼ = X/Rd∼ as sets, one has to be careful
concerning the topologies. Nevertheless, when X/ ∼ and X/Rd∼ coincide as sets while X
is compact, one can show that the two previous topologies coincide.

Simplicial complexes. We now introduce some fundamental objects in combinatorial
geometry. A n-simplex ∆ is the convex hull of n+ 1 points affinely independent in some
Rk called its vertices. A face of a simplex ∆ is the convex hull of a subset of vertices of
∆. A geometric simplicial complex K is a family of simplices such that (see Figure 4):

• all faces of every simplices of K belongs to K,

• the intersection of two simplices are either empty, or a common face.

The dimension of a geometric simplicial complex K is the supremum of the dimension of
its simplices seen as affine spaces.

The polyhedron - or geometric realization - associated to a geometric simplical
complex K is denoted |K| := ⋃

∆⊂K
∆ and it is the union of all the simplices in K. If K is
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finite and of finite dimension n, its polyhedron inherits a topology from Rn.
Given a topological space X and a finite dimensional geometric simplicial complex K,

we say that K triangulates simplicially X or that K is a simplicial triangulation of
X if there exists a homeomorphism between |K| and X.

2.2 Elements of algebraic topology
Fundamental group. Let X be a topological space and x ∈ X. We say that two
continuous paths γ0 and γ1 starting at x and ending at γ0(1) = γ1(1) are homo-
topic if there exists a homotopy H : [0, 1] × [0, 1] → X between γ0 and γ1. In
other terms H is continuous and verifies: H(·, 0) = γ0, H(·, 1) = γ1, H(0, ·) ≡ x and
H(1, ·) is constant. We write γ0 ∼ γ1 if γ0 and γ1 are homotopic. This is an equiv-
alence relation. Then, by definition, the fundamental group of X based at x is
π1(X, x) := {γ : [0, 1] → X : γ is continuous and γ(0) = γ(1) = x} / ∼ the set of all con-
tinuous loop of X based in x quotiented by homotopy. We denote [γ] the class of a loop
γ.

As its name indicates, π1(X, x) is a group. Let γ, γ0 and γ1 be three loops based in x.
Then we define the concatenation of γ0 and γ1 by:

γ0 · γ1 : t ∈ [0, 1
2 ] 7→ γ0(2t)

t ∈ [1
2 , 1] 7→ γ1(2t− 1)

and the inverse of γ by:
γ̄ : t 7→ γ(1 − t).

One can check that the class of γ0 · γ1 in π1(X, x) depends only on the classes of γ0 and
γ1, and that the class of γ̄ is independent on the representative γ ∈ [γ]. We can thus
define the composition law on π1(X, x) by [γ0] ∗ [γ1] := [γ0 · γ1]. One verifies that ∗ is
associative, that the neutral element is [cx] the constant path at x and that the inverse of
[γ] is [γ]−1 = [γ̄].

Suppose X is arcwise connected, and take two points x0, x1 ∈ X. Let α be a continuous
path from x0 to x1. Then to every loop γ0 based in x0 corresponds a loop ᾱ · γ0 · α. The
map ρᾱ : [γ] 7→ [ᾱ · γ · α] is then a homorphism of groups, whose inverse is ρα, hence it is
an isomorphism (not canonical).

Given two pointed topological spaces (X, x) and (Y, y), a continuous map f : X → Y
such that f(x) = y induces a homorphism of groups:

f∗ : π1(X, x) → π1(Y, y)
[γ] 7→ [f ◦ γ] .

In turn, if f is a homeorphism, f∗ is then an isomorphism.

Covering spaces. A covering space of a topological space X is a pair (Y, p) where Y
is a topological space and p : Y → X is a continuous map such that for all x ∈ X there
exists a neighborhood Ux of x such that p−1(Ux) = ⊔

f∈F
Vf , where F is a discrete space,

and with the restriction p|Vf
: Vf → Ux being a homeomorphism for all f ∈ F . A typical

example is given in Figure 5.
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Figure 5: An infinite helix projecting to the unit circle, an example of covering space.

A morphism of covering spaces p1 : Y1 → X, p2 : Y2 → X is a continuous map

f : Y1 → Y2 that makes the following diagram commutative:
Y1 Y2

X

f

p1
p2

.

In the case where Y1 = Y2, p1 = p2, and f is a homeomorphism, f is called a deck
transformation. The set of deck transformations forms a group Aut(p).

X is said to be semi-locally simply connected if every point in X admits a
neighborhood U such that every loop in U can be contracted to a simple point within X.
Note that π1(U) need not to be trivial. Every semi-locally simply connected and path
connected space X admits a so-called universal cover X̃, i.e. a covering space such that
for all other connected covering space Y of X, X̃ is a covering space of Y . An equivalent
characterization of universal covers is that they are simply connected - i.e. with trivial
fundamental group. The universal cover of a space is unique up to isomorphism.

A covering space of X is called Galois is for each x ∈ X and each pair of lifts x̃, x̃′

of x there is a deck transformation sending x̃ on x̃′. In other terms, p is Galois if Aut(p)
acts transitively on the fibers of p. One can show that (Y, p) is normal if and only if
p∗(π1(Y )) is a normal subgroup of π1(X). In particular, as any universal cover X̃ is simply
connected, X̃ must be Galois.

Euler’s characteristic. Let K be a simplicial complex. Its Euler characteristic
χ(K) is the alternating sum ∑

n(−1)ncn where cn denotes the number of n-faces in K. It
is a topological invariant: it can be expressed as the alternating sum of the rank of the
homology groups of the underlying topological space to K. By extension, we can define
the Euler characteristic of any triangulated topological space. Finally, it can be shown
that for an orientable closed surface Sg of genus g, we have χ(Sg) = 2 − 2g. Moreover it
can be shown that π1(Sg) ≃ Z2g where a basis of homotopy is given by the sides of the
4-gon from which Sg is a gluing (see next section).
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2.3 Surfaces
The topic of this thesis are PL isometric embeddings of translation surfaces. We already
saw what is an embedding and an isometry. We keep exploring topology and geometry in
order to understand better the issue, focusing on the dimension 2 which is already very
rich.

2.3.1 Topological surfaces
A topological surface is a 2-dimensional topological manifold.

Orientability. Let S be a topological surface. A strong theorem, proved by Radò, states
that every topological surface can be simplicially triangulated (see [Tho92] or [DM68] for
a proof). Let T → S be a triangulation of S. An orientation o of a triangle t = abc ∈ T
is a cyclic ordering of the vertices in t. An orientation of a triangle induces a natural
orientation of its edges. Two orientations of two adjacent triangles are said to be coherent
if they induced opposite directions on the common edge. A coherent orientation of a
simplicial triangulation T is the assignment of an orientation to each triangle of T such
that every two adjacent triangles have coherent orientations.
Finally S is said orientable, if it admits a triangulation T that can be given a coherent
orientation. Such a surface S endowed with a coherent orientation is said oriented.

The notion of orientability can be made more concrete in the case of embedded
differential surfaces in R3. A topological surface S embedded in R3 is orientable if and
only if it admits a continuous unit normal N : S → S2. This means that N(p) is
orthogonal to the tangent plane TpS of S at p for every p ∈ S.

Moreover, in the case of a differential surface, its orientability is equivalent to the
existence of an orientation preserving atlas, i.e. an atlas where all the chart transition
maps have a positive Jacobian.

Two homeomorphic surfaces have the same orientability, as every triangulation of one
surface gives rise to a triangulation of the other surface and vice-versa.

Triangulation of surfaces and canonical forms. We refer to [Mas19] and [GX+13]
for the detailed proofs and precisions about the two paragraphs that follow.
As stated before, every surface admits a simplicial triangulation. It is a key ingredient in
the proof of the classification theorem of compact, connected surfaces - the topological
part. References for a proof are [Tho92] and [DM68]. Hence every topological surface can
be seen as a 2 dimensional simplicial complex. We can thus have a combinatorial viewpoint
on any topological surface. The remaining of the work, to prove the classification theorem,
consists in reducing the simplicial triangulation by elementary cut and paste operations
in order to finally obtain a unique polygon (or a digon) whose sides are glued in some
canonical way: according to a string of the form

a1b1a
−1
1 b−1

1 ...agbga
−1
g b−1

g c1h1c
−1
1 ...ckhkc

−1
k , g, k ∈ N (I)

in the orientable case, and of the form
a2

1...a
2
gc1h1c

−1
1 ...ckhkc

−1
k (II)

in the non orientable case. See Figure 6 for examples.
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Figure 6: Examples of canonical glued polygons according to oriented edges (arrows),
except the up left one which is not canonical. Up left: a sphere corresponding to the
string aa−1. Up right: a torus corresponding to the string aba−1b−1. Down left: a genus 2
orientable surface corresponding to the string aba−1b−1cdc−1d−1. Down right: a genus 3
non orientable surface corresponding to the string a2

1a
2
2a

2
3.
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S1

S1#S2

D1

S2

D2

Figure 7: The connected sum of two surfaces S1 and S2.

The classification theorem of closed surfaces.

Connected sum and handles. Let S1 and S2 be two topological surface. Let D1 ⊂ S1
and D2 ⊂ S2 be two regions, both homeomorphic to a disk. The boundary ∂D1 and ∂D2
are thus both homeomorphic to a circle. Let f : ∂D1 → ∂D2 be a homeomorphism. Then
we define the connected sum S1#S2 to be the quotient space of (S1 \ D̊1) ∪ (S2 \ D̊2)/ ∼,
where x ∼ f(x) for x ∈ ∂D1 (see Figure 7). One can show that S1#S2 does not depend
of the regions D1 and D2 up to homeomorphism.

Thanks to the existence of a canonical form, we show that every surface can be obtained
as a connected sum of tori possibly with boundary components. Of course, a torus is the
topological surface obtained by identifying the opposite sides of a square without flip.

Indeed, suppose we are given a canonical form I: a1b1a
−1
1 b−1

1 ...agbga
−1
g b−1

g c1h1c
−1
1 ...ckhgc

−1
k .

As said before, we can realize it as a glued (4g+ 3k)-gon, identification being done thanks
to the labeling of the edges of the polygon. First, we can glue each edge labeled ci with
its corresponding one labeled c−1

i , forcing hi to be a loop - see Figure 8. Each loop,
thus corresponds to a boundary component in the glued surface since hi is not identified
with any other edge. Consider the vertex vi of the polygon at the begining of the path
corresponding to the string aibia−1

i b−1
i . We cut the polygon through the diagonals joining

v1 to vi for 1 ≤ i ≤ g, taking care not to cross the loops. This results in 2 pentagons,
realizing respectively the strings a1b1a

−1
1 b−1

1 d1 and d′
gagbga

−1
g b−1

g , corresponding to tori
with one boundary component, and g − 2 hexagons, each realizing a string of the form
d′
iaibia

−1
i b−1

i di, corresponding to tori having two boundary components - loops excluded.
Moreover, we can suppose that all the loops are inside the first torus with one boundary
component. Finally, it remains to glue the di and d′

i appropriately, which amounts to
consider the connected sum of the tori. In the case where g = 0, one can show that we
can introduce string of the form aa−1 while still obtaining the same surface. Hence g = 0
corresponds to a sphere with boundaries (a glued digon with loops inside).
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a1 a1

b1

a1

b1

a2

b1

a1

b1

a2

b2a2

b2

a2

b2

b2

c1

h1

c−1
1

c1 ∼ c−1
1

h1

Figure 8: Examples of realization of a orientable canonical form as a 11-gon - g = 2 and
k = 1. After gluing the edge labeled c1, we obtain a boundary component delimited by
the loop made by h1.

a1

a1

b1

a1

b1

d1

b2

a2

b2

a2
d2 = d1

b1

a1

b1

a2

b2

a2

b2
c1 ∼ c−1

1

h1

Figure 9: Examples 8 continued. The octagon in two to obtain two beveled squares
corresponding to tori with a boundary component after edge gluing.
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The same reasoning can be done for non orientable canonical forms II. The analog of
handles are now called cross-caps, which are projective plane punctured at one point,
and which correspond to strings of the form a2. Every non orientable canonical form II is
thus homeomorphic to a gluing of cross-caps with holes, i.e. a punctured connected sum
of projective planes.

We can now state the classification theorem.

Theorem (classification of topological surfaces). Let S be a topological surface.

• If S is orientable, then S is homeomorphic to the connected sum of g ≥ 0 tori, with
possibly some boundary components.

• If S is non orientable, then S is homemorphic to the connected sum of g > 0
projective planes, with possibly some boundary components.

Thus, an orientable and closed - i.e. compact, connected, without boundary - topo-
logical surface is determined by the natural number g called its genus.

2.3.2 Polyhedral surfaces
There are two main ways to define (finite) polyhedral surfaces, a constructive one by
gluing of polygons along isometrically paired edges, and a local one where each point
admits a neighborhood isometric to a neighborhood of the apex of a Euclidean cone.

Let P be a finite family of compact Euclidean polygons, together with a partial pairing
σ of their edges, and isometries fe : e → σ(e) as gluing maps. This forces edges e and
σ(e) to be isometric - i.e. to have the same Euclidean length.

The gluing Σ of P according to σ with gluing maps (fe)e∈E is called a polyhedral
surface.

One can show that a polyhedral surface Σ is a topological surface, without boundary
if the pairing is total.

As seen before, Σ is a length space whose intrinsic topology is the quotient topology.
Let us keep the notations of section 2.1: d∼ being the semi-metric on Σ = P/ ∼ defined
by Equation (2.1) and d̄ the quotient of d over X/Rd. We can prove that d∼ is in fact a
metric, and thus d∼ = d∼. Indeed, suppose that we are given two points x ̸= y in Σ. We
thus have that π−1(x) is disjoint from π−1(y), and that both are closed and discrete in⊔
P∈P

P , thus finite. Hence, if (pi)i=0,...,k and (qi)i=0,...,k are as in the definition of d∼, then
k∑
i=0

d(pi, qi) ≥ d (π−1(x), π−1(y)) > 0, hence d∼(x, y) > 0 and d∼ satisfies the separation
axiom.

It appears that Σ is flat everywhere, except possibly at a finite number of points
which are vertices of P . A length space X is flat at a point p if p admits a neighborhood
isometric to a plane disk in R2. Let p be a point in Σ which is not a vertex. If p belongs
to the interior of some polygon P , then its Euclidean distance r to ∂P is positive, and
then the Euclidean disk in P of radius r

2 centered at p provides a flat neighborhood at p.
Otherwise, p is on an edge e ⊂ Pe, which is glued with an other edge σ(e) ⊂ Pσ(e) and so
the union of two sufficiently small half-disks of the same radius centered at p in Pe and
Pσ(e) glue together to form a disk centered at p in Σ.
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Let v be a vertex in Σ. Its conical angle is the sum of all the incident angles to v.
An angle being incident to v if it is the angle between two edges at some lift of v in some
polygon. A vertex of conical angle 2π is flat: just glue parts of small enough disks of the
same radius in the different polygon hitting v. On the contrary, if the conical angle at v
is different from 2π, then Σ is not flat at v and v is called a singularity.

Let γ : S1 → S2 be a rectifiable simple loop drawn in S2 ⊂ R3. The Euclidean cone
C of apex O (the origin of R3) and directrix γ is the union of all the half-lines of origin O
passing through a point of γ: C =

{
x+ t

−−−→
Oγ(s) : t ≥ 0, s ∈ S1

}
. The measure of its angle

is the length of γ. Two directrices of the same length lead to isometric Euclidean cone. In
particular, a Euclidean cone of angle 2π is isometric to a Euclidean plane. Indeed, setting
φ : O + teiθ 7→ O + t

−−−−→
Oγ̃(eiθ) yields the desired isometry between C ≃ R2 and C.

Now, let p be a point in Σ. If Σ is flat at p, then p admits a neighborhood isometric
to a Euclidean disk, and hence, by the previous discussion, isometric to a neighborhood of
the apex of a Euclidean cone of angle 2π. If p is a singularity, we easily see, as in the flat
case, that p has a neighborhood isometric to a neighborhood of the apex of a Euclidean
cone whose angle is equal to the conical angle at p. By definition, this conical angle is 1/ε
times the length of the circle of points at distance ε to p, for ε sufficiently small.

It can be shown conversely that a space endowed with a polyhedral metric is a
polyhedral surface.

A piecewise linear or PL map f : |T1| → |T2| between simplicial triangulations is a
continuous map such that for every triangle t of t1, f|t maps t linearly into a triangle in
T2. We can extend this definition to polyhedral surfaces as the decomposition in polygon
of a polyhedral surface Σ induces a simplicial triangulation of Σ by triangulating each
polygons defining Σ. Thus, a PL map from a polyhedral surface Σ1 to another Σ2 is a
map f : Σ1 → Σ2 such that Σi admits a triangulation Ti, for i = 1, 2 with each ti ∈ Ti
sent on a Euclidean triangle in Σi and with, for all triangle t1 of T1, f|t1 linearly mapping
t1 into a triangle in T2.

2.4 Riemann surfaces and their moduli space
The references for this section are [IT12], [Sik18] and [Wel16].

Smooth differential surfaces and Riemann surfaces. Let M be a Hausdorff second
countable topological space.

A smooth atlas on M is the data of a family of charts (Uα, φα) where (Uα) is an
open cover of M and φα : Uα → Vα ⊂ Rn are a homeomorphisms, such that the chart
transition maps φβ ◦ φ−1

α : φα (Uα ∩ Uβ) → φβ (Uα ∩ Uβ) are C∞ diffeomorphisms for all
α, β. M equipped with a smooth atlas is called a smooth manifold of dimension n.

A map f : U ⊆ Cn → V ⊆ Cn between two open sets of Cn is said to be holomorphic
if it is C1 and if its real differential df(z) is C linear1 at each z in Cn, where the action of
C is viewed thanks to the identification Cn ι≃ R2n.

A holomorphic atlas on M is the data of a family of charts ((Uα, φα)) where (Uα)
is an open cover of M and φα : Uα → Vα ⊂ Cn are homeomorphisms, such that the

1Formally: d(ι ◦ f)(ι(a · v)) = a · ι ◦ df(ι(v)) for a ∈ C and v ∈ Cn.
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chart transition maps φβ ◦ φ−1
α : φα (Uα ∩ Uβ) → φβ (Uα ∩ Uβ) are biholomorphisms for

all α, β. The manifold M equipped with such a holomorphic atlas is called a complex
manifold of dimension n.

A smooth differential surface is a smooth manifold of dimension 2, while a Riemann
surface is a complex manifold of dimension 1.

A holomorphic (resp. smooth) map f between two Riemann surfaces (resp. smooth
differential surfaces) is a map that is holomorphic (resp. C∞) when read through charts.
A meromorphic function f : C → C is a function that is holomorphic except possibly
at isolated singularities of finite order. A meromorphic map between two Riemann
surfaces is a map that is meromorphic when read through charts.

Let f : S1 → S2 be a holomorphic (resp. smooth) map between Riemann surfaces
(resp. smooth differentiable surfaces), and (Ui, φi), (Vj, ψj) atlases of S1 and S2. Then
f defines a family of holomorphic (resp. smooth) maps fi,j = φi ◦ f ◦ ψ−1

j : ψj(Vj) ∩
φi(Ui) → Ui,j := ψj(Vj) ∩ Ui which agree on overlapping charts: if Ui ∩ Uk ̸= ∅ and
Vj ∩ Vl ̸= ∅, fi,j|Ui,j∩Uk,l

= fk,l|Ui,j∩Uk,l
. Conversely, if we are given holomorphic (resp.

smooth) maps fi,j : Ui,j → Ui,j such that fi,j|Ui,j∩Uk,l
= fk,l|Ui,j∩Uk,l

whenever Ui,j ∩Uk,l ≠ ∅,
they glue together to define a unique holomorphic (resp. smooth) map f : S1 → S2.

Every Riemann surface is in particular a smooth differential surface. Furthermore, as
the Jacobian Jzφ of a biholomorphism φ is equal to |φ′(z)|2 by Cauchy-Riemann equations,
every Riemann surface is canonically oriented.

Tangent space at a point. Let S be a Riemann surface (resp. a smooth differentiable
surface) and x ∈ S. Let φ be some chart near x. φ is said to be centered at x if φ(x) = 0.
We define the tangent space of S at x denoted TxS as

TxS =
{
(φ, v) : φ chart centered at x, v ∈ C ≃ R2

}
/ ∼

where (φ1, v1) ∼ (φ2, v2) if d(φ1 ◦ φ−1
2 )(0) · v2 = v1. TxS inherits a structure of complex

vector space of dimension 1 (resp. real vector space of dimension 2) via [(φ1, v1)] +
λ[(φ2, v2)] = [(φ1, v1 + λd(φ1 ◦ φ−1

2 )(0) · v2)].

Differential. Let f : S1 → S2 be a smooth map between smooth differentiable surfaces,
x ∈ S1 and φ, ψ charts of S1 at x and of S2 at f(x) respectively. We define the differential
of f at x by

df(x) · [(φ, v)] = [(ψ, d(ψ ◦ f ◦ φ−1)(φ(x)) · v)].
This is well defined because if (φ1, v1) ∼ (φ2, v2) then by the chain rule d(ψ◦f◦φ−1

1 )(φ1(x))·
v1 = d(ψ ◦ f ◦φ−1

2 )(φ2(x)) ◦ d(φ2 ◦φ−1
1 )(φ1(x)) · v1 = d(ψ ◦ f ◦φ−1

2 )(φ2(x)) · v2. Note that
for a holomorphic map, df(x) is C-linear at every x, and is thus the multiplication by a
scalar denoted f ′(x) ∈ C.

Vector bundles. Let K = R or C. A vector bundle is a 4-tuple
(
E,X, π,Kk

)
where:

i) X and E are topological spaces, named respectively the base space and the total
space,

ii) π : E → X is a continuous surjection called the bundle projection,

25



iii) the fiber Ex := π−1(x) is a finite dimensional K vector space for all x ∈ X,

iv) at every point x, π admits a local trivialization (U,φ), where U is an open
neighborhood of x and φ : π−1(U) → U × Kk is a homeomorphism such that:

• the diagram
π−1(U) U × Kk

U

π

φ

π1

is commutative, where π1 denote the

projection on the first coordinate,
• the map v ∈ Kk 7→ φ−1(x, v) ∈ π−1(U) is a linear isomorphism.

Given a vector bundle as before, and two local trivialization (U,φ) and (V, ψ), the
composite φ−1◦ψ : (U∩V )×Kk → (U∩V )×Kk is of the form φ−1◦ψ(x, v) = (x, gUV (x).v)
for some continuous map gUV : U ∩ V → GLk(K). The gUV are called the transition
functions. They satisfy

gUU = id and gUV = gUW ◦ gWV . (∗)

In fact, the data of an open cover U of the topological space X and a family of
continuous maps (gUV : U ∩ V → GLk(K)) satisfying the cocycle condition (∗) define a
structure of vector bundle of base space X. Indeed, one can consider E = ⊔

U
U × Kk/ ∼

the disjoint union of the spaces U × Kk quotiented by the equivalence relation (U, x, v) ∼
(V, x, gV U (x).v) for all x ∈ U ∩ V and all v ∈ Kk. The projection π is then the quotient of
the second projection, and local trivializations are given by inverses of quotient of the
injection U × Kk ↪→ ⊔

U
U × Kk.

If π : E → X is a vector bundle, its dual π∗ : E∗ → X is defined as follows:

• E∗ = ⊔
x∈X

E∗
x where F ∗ denotes the dual of the vector space F ,

• π∗ sends each E∗
x on x ∈ X,

• For each local trivialization φ : π−1(U) → U×Kk of π, we define a local trivialization
for π∗:

φ∗ :
π∗−1(U) → U × Kk

λ 7→
(
p, (φt|Ex

)−1 · λ
) .

The associated transition functions defined then a structure of vector bundle.
Similarly, if E,F are vector bundles over a same base space X, their tensor product

E ⊗ F is the vector bundle defined by the transition functions gαβ ⊗ hαβ, where gαβ
(resp. hαβ) runs through the transition functions of E (resp. F ). In particular, setwise,
E ⊗ F = ⊔

x∈X
Ex ⊗ Fx.

A section of a vector bundle, is a map s : X → E such that π ◦ s = idX . Note that a
section ω of the dual bundle E∗ acts on each fiber of E by ω · v = ωx(v) for v ∈ Ex as
ωx ∈ E∗

x. For the same reason, an element of E ⊗ E acts on each fiber of E ⊕ E.
Vector bundles can be endowed with additional structures. If K = R, a smooth

vector bundle is a vector bundle such that the transition maps are C∞. If K = C, a
holomorphic vector bundle is a vector bundle whose transition maps are holomorphic.
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Let π : E → X be a topological (resp. smooth, holomorphic) fiber bundles. Let
s : X → E a continuous (resp. smooth, holomorphic) section and (Ui) an open cover of X.
Then s defines a family of continuous (resp. smooth, holomorphic) sections si : Ui → E
by restriction that agree on overlaps: si|Ui∩Uj

= sj|Ui∩Uj
for all i, j. Conversely, if (si)

is a family of continuous (resp. smooth, holomorphic) sections si : Ui → E such that
si|Ui∩Uj

= sj|Ui∩Uj
, then they glue together to define a unique section s : X → E.

Tangent bundle, cotangent bundle, and Riemannian metrics. Let S be a Riemann
surface (respectively a smooth differential manifold).

The tangent bundle TS of S is the holomorphic (respectively smooth) vector
bundle whose transition maps are given by the differential of the chart transition maps
φαβ : x 7→ d(φβ ◦ φ−1

α )(x). It can be seen setwise as the disjoint union of the tangent
spaces TpS.
A holomorphic (resp. smooth) section X : S → TS is called a vector field. Let
φ = (x, y) : U → R2 a system of local coordinates on a smooth surface S at p. Note that,
by definition, φ is itself a differential map. We define the vector fields ∂

∂x
and ∂

∂y
on U by

(
∂

∂x

)
p

:= (dφ(p))−1 · (1, 0) and
(
∂

∂y

)
p

:= (dφ(p))−1 · (0, 1).

The family
((

∂
∂x

)
p
,
(
∂
∂y

)
p

)
is then a basis of TpS at each p ∈ U , which depends smoothly

of p. Every smooth vector field X can thus be written, locally on U , Xp = f̃(p)
(
∂
∂x

)
p

+
g̃(p)

(
∂
∂y

)
p

for all p ∈ U and for some smooth functions f, g : U → R. We often write
X = f(x, y) ∂

∂x
+ g(x, y) ∂

∂y
for f = f̃ ◦ φ and g = g̃ ◦ φ smooth.

Similarly, if S is a Riemann surface, and if φ = z : U → C is a local coordinate of S at p,
we define: (

∂

∂z

)
p

= (dφ(p))−1 · 1.

(
∂
∂z

)
p

is a basis of TpS at each p ∈ U which depends analytically of p. As previously,
every holomorphic vector field X reads through φ, locally on U , as X = f(z) ∂

∂z
where f

is holomorphic on U .
The cotangent bundle T ∗S of S is the dual of the tangent bundle TS. A holomorphic

(respectively meromorphic, smooth) section ω : S → T ∗S of T ∗S is called a holomorphic
1-form (respectively a meromorphic 1-form, a smooth differential 1-form). We
denote Ω(S) the space of 1-forms on S.
Let ζ : U → C a local coordinate of a Riemann surface S at p. We define the holomorphic
1-form on U, dζ = ζ∗dz = ζ ′dz by

dζp = dζ(p) = ζ ′(p) ·

where we denoted dz = idC, and f ∗(ω) : p 7→ ωf(p)(df(p)·). We have dζp ̸= 0 for all p ∈ U .
Hence every holomorphic 1-form ω reads through ζ as ω = f(ζ)dζ for some holomorphic
function f .
Similarly, if S is a smooth surface and φ = (x, y) : U → R2 is a local coordinate of S at
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x, denote (e∗
x, e

∗
y) the dual basis of the canonical basis of R2. We define smooth 1-form

dx = φ∗e∗
x, dy = φ∗e∗

y on U by:

dxp = e∗
x ◦ dφ(p), dyp = e∗

y ◦ dφ(p).

We have that (dxp, dyp) is a basis of T ∗Sp ⊗ T ∗Sp that depends smoothly of p. Hence
every smooth 1-form ω reads through φ as ω = f(x, y)dx + g(x, y)dy for some smooth
functions f, g.

A holomorphic quadratic differential q : S → T ∗2S is a holomorphic section of the
vector bundle T ∗2S := T ∗S ⊗C T

∗S that takes value in SymT ∗2S the sub-bundle formed
by symmetric C-bilinear forms.

A Riemannian metric g : S → T ∗2S is a smooth section of the smooth vector bundle
T ∗2S := T ∗S ⊗R T

∗S such that for all p ∈ S, gp := g(p) is a symmetric definite positive
R-bilinear form on TpS.
Every Riemannian manifold (M, g) is a length space. Given a piecewise C1 path γ : I → M ,
we can define its length by ℓ(γ) =

∫
I

√
gγ(t)(γ′(t), γ′(t))dt. The distance between two points

in M is then defined as the shortest path distance. This metric endows M with a length
space structure.

Link between complex structures and conformal structures. Let (M, g) and
(N, h) be two Riemannian manifolds. A conformal map from M to N is a diffeomorphism
f : M → N such that the pull back f ∗h : m ∈ M 7→ hf(m)(df(m)·, df(m)·) of h under f
is equal to eφg where φ is a smooth real-valued function on M . M and N are said to be
conformally equivalent or to have the same conformal structure if such a conformal
map exists.

Intuitively, f is conformal if it locally preserves oriented angles: for every point m ∈ M
and every smooth paths γ1, γ2 through m, the oriented angle ∠ ((f ◦ γ1)′(0), (f ◦ γ2)′(0))
is equal to ∠ (γ′

1(0), γ′
2(0)).

Suppose now f is a conformal map between two open subsets U, V of C. Then
df(z) preserves angles, that is df(z) is a direct similarity, for all z. Hence, f satisfies
Cauchy-Riemann equations and so is holomorphic. Conversely, every holomorphic function
between open subsets of C is conformal as its differential at z is the multiplication by
f ′(z) which preserves angles.

The latter fact is actually general. First, it can be shown that every Riemannian
manifold can be endowed a natural complex structure - and conversely every complex
manifold admits a Riemannian metric. Then, a map f : (M, g) → (N, h) between two
Riemannian surfaces is conformal if and only if it is biholomorphic between the underlying
Riemann surfaces.

Moduli spaces. A holomorphic, or conformal, map f : S1 → S2 from a Riemann
surface S1 to another Riemann surface S2 is a map that is holomorphic when read in
charts: φ2 ◦f ◦φ−1

1 is holomorphic for all chart φ1 of S1 and φ2 of S2. A biholomorphism
f : S1 → S2 between S1 and S2 is a bijective holomorphic map whose inverse is holomorphic.
We say that two Riemann surfaces S1 and S2 are biholomorphically equivalent,
are conformally equivalent, have the same complex structure or have the same
conformal structure if there exists a biholomorphism between S1 and S2.
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Now, let Sg be the closed orientable topological surface of genus g ≥ 0. Sg can be
endowed with a lot of different complex structures. See Section 2.5 for a classification of
all complex structures in genus 1. It is thus helpful to define:

Mg := {biholomorphic classes [S] of closed Riemann surfaces of genus g} .

Mg is called the moduli space of Riemann surfaces of genus g. It can be shown that
Mg is reduced to a point if g = 0, and admits a complex structure making it a complex
manifold of dimension 3g− 3 if g ≥ 2. We will describe explicitly M1 in the next section.

Uniformisation theorem. The uniformisation theorem is a central result in the theory
of Riemann surfaces. It permits to classify compact closed Riemann surfaces up to
biholomorphism. Let us state the theorem. We refer to the Section 2.5 for details about
the Riemann sphere and the upper half-plane.

Theorem (Uniformisation). Every simply connected Riemann surface is biholomorphic to
one of the following:

1. the Riemann sphere Ĉ,

2. the complex plane C,

3. the upper half-plane H2.

This implies that if Σ is a connected Riemann surface, then its universal cover
Σ̃

Σ

π is

biholomorphic to one of Ĉ,C or H2.
In the following, Σ denotes a compact and closed Riemann surface.
If the genus of Σ is equal to g = 0, then Σ is homeomorphic to Ĉ as a topological

surface thus the only possibility is that Σ is biholomorphic to Ĉ.
Now suppose g ≥ 1. We can transfer the analytic structure on Σ by π and endow Σ̃

with the analytic atlas {(V, φ ◦ π) : V sheet of π over U and (U,φ) chart on Σ}. This is
in fact the only complex structure on Σ̃ making π holomorphic. For this complex structure,
every deck transformation γ of Σ̃ is a biholomorphism: for (V, φ1◦π) and (V2, φ2◦π) charts
of Σ̃ we have (φ2 ◦π)◦γ ◦(φ1 ◦π)−1 = φ2 ◦(π◦γ)◦π−1 ◦φ−1

1 = φ2 ◦π◦π−1 ◦φ−1
1 = φ2 ◦φ−1

1
which is holomorphic. Denote by Γ the group of deck transformations of the universal
cover Σ̃. Now, by the theory of covering, the universal covering is Galois, and we can

define f : Σ → Σ̃/Γ
s 7→ [s̃] where π(s̃) = s

. We have then the following commutative diagram:

Σ̃

Σ Σ̃/Γ

π
π0

f

where we denoted π0 = [·] : Σ̃ → Σ̃/Γ the canonical projection, which

shows that f is surjective. Moreover, if f(s1) = f(s2) then for any s̃1 ∈ π−1
0 (s1) and

s̃2 ∈ π−1
0 (s2) we have s̃2 = γ · s̃1 for some γ ∈ Γ , so s2 = π(s̃2) = (π ◦ γ)(s̃1) = π(s̃1) = s1

and f is bijective. Moreover, as π and π0 are both continuous and open, so is f which
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is thus a homeomorphism f : Σ → Σ̃/Γ . This defines a complex structure on Σ̃/Γ by
transfer via f−1, and for this structure the canonical projection π0 is holomorphic. One
can show that Γ acts discontinuously on Σ̃: every s̃ ∈ Σ̃ admits a neighborhood V such
that V ∩ γ · V = ∅ for all γ ∈ Γ \ {id}. This implies in particular that Γ acts without
fixed point on Σ̃.

If Σ̃ = C, then as we will show in Section 2.5.3, Γ is a subgroup of Aut(C) = {z 7→
az + b : a, b ∈ C, a ̸= 0}. If γ : z 7→ az + b with a ≠ 1, then b

1−a is a fixed point. Hence
a = 1 for every chart of Γ , and Γ is a group of translations identified with an additive
subgroup of C. Γ is thus a discrete subgroup of C, implying that Γ is either trivial,
infinite monogene, or a lattice. As Σ is compact, Γ must be a lattice, and Σ ≃ C/Γ is a
torus (cf Section 2.5.1).

We have just proved that, if Σ̃ = C, then g = 1.
Finally, if Σ̃ = H2, Γ is a subgroup of Aut(H2) = PSL2(R) = Isom+(H2, ds2

H2) and
the metric ds2

H2 - see section 2.5.2 - descends to a metric ds2
Σ in such a way that (Σ, ds2

Σ2)
is locally isometric to (H2, ds2

H2). Its curvature is then −1, implying that the genus of Σ
is different from 1.

It results from this discussion the following classification theorem:

Theorem (Classification of closed Riemann surfaces). Let Σ be a closed Riemann surface
of genus g. Then:

0. if g = 0, then Σ is biholomorphic to the Riemann sphere Ĉ,

1. if g = 1, then Σ is biholomorphic to a flat torus C/Γ ,

2. if g ≥ 2, Σ is biholomorpic to a quotient H2/Γ of H2 by a Fuschian group Γ <
PSL2(R).

2.5 Moduli space of flat tori: the modular curve M1

In this section we recall the determination of the moduli space of flat tori, also called the
modular curve. We first give two definitions of flat tori. We give then some basics about
hyperbolic geometry in the upper half plane. We finally compute the modular curve. The
main reference for this section is [JS87] that we follow carefully.

2.5.1 Definition(s) of geometric flat tori
A geometric flat torus T is the polyhedral surface obtained by gluing the opposite
edges of a parallelogram (isometries between edges being given by translations). It is a
polyhedral surface of genus 1.

Suppose that the (non degenerated) parallelogram P = ConvHull(0, v1, v2, v1 + v2)
defining T is embedded in the plane. Then, we can associate to T the lattice Γ = Zv1 ⊕Zv2.
It appears that T ≃ C/Γ as length spaces.

Conversely, given a lattice Γ = Zv1 ⊕ Zv2 we can associate the parallelogram P =
ConvHull(0, v1, v2, v1 + v2).

Moreover, we also have that T ≃ C/Γ as Riemann surfaces. Indeed, first note that a
geometric flat torus has no singularity. Hence, decomposing P in two overlapping parts
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v1

v2

1
2v1

Figure 10: The parallelogram P , and the chart open sets U and V . Red segments represent
removed parts.

U = π(P \ [0, 1]v2) and V = π(P \ [0, 1](v2 + 1
2v1)) as in Figure 10 which consists of T with

a latitude circle removed, we obtain an atlas of T in two charts: the canonical projection
realizing a biholomorphism between any of the two previous sub-regions and an open
annulus in R2. The chart transition maps are then given by the translations of vector
±1

2v1. Hence chart transition maps are holomorphic.
For C/Γ , posing

U = π ({λ1v1 + λ2v2 : 0 ≤ λ1, λ2 ≤ 1 and λ1 ̸= 0, 1}) and

V = π
({
λ1v1 + λ2v2 : 0 ≤ λ1, λ2 ≤ 1 and λ1 ̸= 1

2

})
gives charts with also translations as chart transition functions.
Finally, the identity idP passes to quotient in both side to give a biholorphism between T
and C/Γ .

2.5.2 Hyperbolic geometry of the upper half plane H2

Metric. The upper half plane H2 = {z = x+ iy ∈ C | ℑ(z) := y > 0} is a Riemann
surface as an open subset of C. We can define a Riemannian metric on H2 by:

ds2
z=x+iy := |dz|2

ℑ(z)2 = dx2 + dy2

y2

where dx, dy are the linear forms of C ≃ R2 dual of the canonical basis (x, y). As we saw
before, this induces a structure of length space (H2, dH2 , ℓH2) on H2.
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Figure 11: A topological picture explaining the decomposition of a flat torus in two charts.
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Isometries. First note that SL2(R) acts transitively on H2 by homography:
(
a b
c d

)
·z :=

az+b
cz+d , since ℑaz+b

cz+d = ad−bc
|cz+d|2 ℑz. The kernel of this action being equal to homotheties, it

induces a free and transitive group action of PSL2(R) ↷ H2.

Let γ = (x, y) : I → H2 be a piecewise C1 path, and let A =
(
a b
c d

)
∈ PSL2(R). We will

show that ℓH2(A · γ) = ℓH2(γ). Note A · z = u(z) + iv(z). One computes v(z) = y
|cz+d|2

and A′(z) = 1
(cz+d)2 , hence A′(z) = v(z)

y
and

ℓH2(A · γ) =
∫
I

|(A ◦ γ)′(t)|
v ◦ γ(t) dt =

∫
I

|v◦γ
y

(t)||γ′(t)|
v ◦ γ(t) dt =

∫
I

|γ′(t)|
y(t) dt = ℓH2(γ).

We thus show that every elements of PSL2(R) is an isometry of H2.

Digression about the Riemann sphere Ĉ and its Möbius transformations. By
definition, the Riemann sphere Ĉ = C ∪ {∞} is the Alexandrov’s completion of C. Ĉ
can be endowed a structure of Riemann surface compatible with its topology by the atlas
((Ui, φi))i=1,2 where U1 = C, U2 = Ĉ \ {0} and φ1 = idC, φ2 = idĈ\{0}. Thus the chart

transition map is C∗ → C∗

z 7→ 1
z

which is holomorphic.

In fact, let us endow S2 with the complex structure given by the standard atlas ((UN , πN ), (US, πS))
where UN = S2 \ {N := (0, 0, 1)}, US = S2 \ {S := (0, 0,−1)}, and πN (resp. πS) is the
stereographic projection from the North pole N (resp. from the South pole S): πN :
(x, y, z) ∈ S2 \{N} 7→ x+iy

1−z ∈ C (resp. πS : (x, y, z) ∈ S2 \{S} 7→ x−iy
1+z ∈ C). See Figure 12.

Inverses are given by π−1
N : z ∈ C 7→

(
2z

1+|z|2 ,
|z|2−1
|z|2+1

)
and π−1

S : z ∈ C 7→
(

2z̄
1+|z|2 ,

1−|z|2
1+|z|2

)
.

The chart transition maps are given by πN ◦ π−1
S : z ∈ C∗ 7→ 1

z
∈ C∗ - and its inverse. It

now follows easily that the map f : z ∈ C 7→ π−1
N (z) ∈ S2 \N

∞ 7→ N
is a biholomorphism

examining how f and f−1 read in charts. Indeed, for example, πN ◦ f ◦ φ1 : z 7→ z, while
πS ◦ f ◦ φ1 = πS ◦ π−1

N ◦ (πN ◦ f ◦ φ1) : z 7→ 1
z
, and by the same kind of manipulation as

before πN ◦ f ◦ φ2 : z 7→ 1
z

and πS ◦ f ◦ φ2 : z 7→ z.
Now, note that GL2(C) acts on Ĉ by homography:

(
a b
c d

)
· z =


az+b
cz+d if z ̸= −d

c
,∞

∞ if z = −d
c

a
c

if z = ∞
if c ̸= 0,

(
a b
c d

)
· z =

{
az+b
cz+d if z ̸= ∞
∞ if z = ∞ if c = 0.

This action being invariant by homothety, it defines a free action PSL2(C) ↷ Ĉ. It can
be shown that this is a meromorphic action and that Aut(Ĉ), the set of meromorphic
bijections of Ĉ, identifies with PSL2(C). They are called Möbius transformations.
Now we define a circle of Ĉ ≃ S2 the intersection of S2 with a Euclidean plane Π not
tangent to S2. We will show that a Möbius transformation sends circles on circles. If Π
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N

S2

p

πN(p)

C

Figure 12: The stereographic projection πN from the North pole N . πN is the intersection
point of the half-line from N through p with the plane (O, x, y).

admits the equation αx1 + βx2 + γx3 = δ with α, β, γ, δ ∈ R, then the circle it defines on
Ĉ is πN(Π ∩ S2) that has for equation

2αx+ 2βy + γ(|z|2 − 1) = δ(|z|2 + 1), z = x+ iy.

Denoting a = γ − δ ∈ R, b = α− iβ ∈ C and c = −(γ + δ) ∈ R, this becomes:

azz̄ + bz + b̄z̄ + c = 0.

Let h =
(
a1 a2
a3 a4

)
be a Möbius transformation, and C a circle with equation azz̄+bz+ b̄z̄+

c = 0. Then h−1(C) is the set of solutions of the equation ah(z)h(z)+bh(z)+ b̄h(z)+c = 0
that can be rearranged as ãzz̄ + b̃z + ¯̃bz̄ + c̃ = 0, with ã = |a1|2a+ 2ℜ(a1ā3b) + |a3|2c ∈ R
and c̃ = a|a2|2 + 2ℜ(ba2ā4) + c|a4|2 ∈ R. Hence h−1(C) is a circle of Ĉ.

Finally, let h =
(
a b
c d

)
be a Möbius transformation of Ĉ. We know that h is

meromorphic. We show that h is in fact conformal. Let us read h through charts. Let
us recall the notation φ1, φ2 of the two introduced charts of Ĉ, and J : z 7→ 1

z
be the

chart transition map as seen before. We denote hi,j : z 7→ φi ◦ h ◦ φ−1
j (z) for i, j = 1, 2.

Then h1,1(z) = h(z) = az+b
cz+d , which has as derivative h′

1,1(z) = ad−bc
(cz+d)2 = 1

(cz+d)2 ∈ C∗ for
all z ̸= −d

c
. Hence h1,1 is conformal on C \ {−d

c
}. Hence so is h. It remains to check

conformality at ∞ and −d
c

.
If c = 0, then a ̸= 0, −d

c
= ∞ and h2,2(z) = J ◦ h1,1 ◦ J(z) = c+dz

a+bz satisfies h′
2,2(z) =

1
(a+bz)2 ∈ C∗ for all z ̸= −a

b
, 0. In particular, h′

2,2 admits a holomorphic continuation near
0, which is conformal. Consequently, J(0) = ∞ is a erasable singularity in one chart,
hence in all charts, and h is conformal at ∞, and thus everywhere.
If c ̸= 0, let us take a look at ∞. We have: h1,2(z) = a+bz

c+dz and h′
1,2(z) = −1

(c+dz)2 ∈ C∗ for all
z ̸= ∞, 0, hence h is conformal at J(0) = ∞. Finally, at −d

c
̸= ∞, we have h2,1(z) = cz+d

az+b
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and h′
2,1(z) = −1

(az+b)2 ∈ C∗ for all z ̸= −d
c
, 0, so h2,1 admits a conformal continuation at −d

c

and so h is conformal.

Geodesics. A geodesic between two points in H2 is a path of shortest length between
these two points. We will show that given two points z1, z2 in H2, there is a unique
geodesic between them.
Suppose first that z1 = x0 + ia and z2 = x0 + ib have the same real part. Let γ = (x0, y) :
[0, 1] → H2 the segment x0 + [ia, ib] so that y(0) = a, y(1) = b and y′(t) > 0. We have:

ℓH2(γ) =
∫ 1

0

|y′(t)|
y(t) dt =

∫ b

a

dy

y
= ln

(
b

a

)
.

Moreover, if γ̃ = (x̃, ỹ) : [0, 1] → H2 is an other piecewise C1 path on H2, then:

ℓH2(γ̃) =
∫ 1

0

√
x̃′(t)2 + ỹ′(t)2

ỹ(t) dt ≥
∫ 1

0

|ỹ′(t)|
ỹ(t) dt ≥

∫ 1

0

ỹ′(t)
ỹ(t) dt = ℓH2(γ).

Equality holds if and only if x̃′ = 0 and ỹ′ ≥ 0. Hence γ̃ is the Euclidean segment joining
z1 = x0 + ia to z2 = x0 + ib.
Now suppose that z1 and z2 have not the same real part. The perpendicular bisector
of the Euclidean segment joining z1 and z2 cuts the real axis in a point r which is the
center of the unique Euclidean circle C through z1 and z2 and orthogonal to the real
axis. Suppose that C intersects R at z∗

1 and z∗
2 . The action PSL2(R) ↷ R ∪ {∞} being

2-transitive, there exists h ∈ PSL2(R) such that h(z∗
1) = 0 and h(z∗

2) = ∞. But, as a
Möbius transformation, h sends C to a circle of Ĉ orthogonal to the real axis. Hence h(C)
is the imaginary axis. But we just saw that the geodesic between h(z∗

1) and h(z∗
2) is the

Euclidean segment joining them. Hence, the geodesic between z∗
1 and z∗

2 is the arc of C in
H2 joining these two points.

We thus showed that geodesics in H2 are given by straight vertical lines and half-circles
centered in the real horizontal axis. We adjoin a point ∞ to vertical geodesics. By this way,
any geodesic admits two end points in R∪ {∞}. We saw that PSL2(R) sends geodesics on
geodesics. In fact, this gives a transitive action of PSL2(R) on the set of geodesics in H2.
Indeed, if C,C ′ are two such geodesics, and if C (resp. C ′) has endpoints s, t ∈ R ∪ {∞}
(resp. s′, t′ ∈ R ∪ {∞}), then there exists h ∈ PSL2(R) such that h(s) = s′ and h(t) = t′

as the action of PSL2(R) on R ∪ {∞} is 2-transitive. It follows that h(C) = C ′ as the
endpoints of a geodesic determine it uniquely.

Generators for PSL2(C). We showed that PSL2(C) and PSL2(R) appear as subgroups
of isomorphisms of some geometric space, the Riemann surface Ĉ for the first and the
Riemannian manifold (H2, ds2) for the second. We now give generators for PSL2(C).

Note that similarities Sα =
(
α 0
0 1

)
: z 7→ αz, α ∈ C∗, the inversion J =

(
0 1
1 0

)
: z 7→ 1

z

and translations Tt =
(

1 t
0 1

)
: z 7→ z + t, t ∈ C, are all Möbius transformations.

Conversely, it appears that they generate PSL2(C). Indeed, let h =
(
a b
c d

)
∈ PSL2(C).

35



If c = 0, then h(z) = a
d
z + b

d
= Tt ◦ Sα(z) with t = b

d
and α = a

d
∈ C∗. If c ̸= 0, then

h(z) = a
c

− bc−ad
a(cz+d) = (Tt ◦ J)

(
c2z+cd
bc−ad

)
with t = a

c
. Applying the case c′ = 0 to a′z+b′

c′z+d′

with a′ = c2, b′ = cd, d′ = bc− ad, we see that h can be expressed thanks to similarities,
translations and the inversion J .

2.5.3 Classification of flat tori
Let T = C/Γ be a geometric flat torus, with Γ = Zv1 ⊕ Zv2 its associated lattice.
Exchanging v1 and v2 if necessary, we can suppose that (v1, v2) forms a direct basis. Then,
the similarity by multiplication by v−1

1 sends Γ to Γτ = Z ⊕ Zτ , where τ = v2
v1

∈ H2, and
descends into a biholomorphism between T and C/Γτ . We can thus suppose that Γ is of
the form Γτ for some τ ∈ H2. We denote Tτ = C/Γτ

Now given two geometric flat tori Tτ and Tτ ′ , we want conditions on τ and τ ′ for them
to be conformally equivalent. Assume so that there is a biholomorphism f : Tτ ′ → Tτ .
Considerations of algebraic topology - the fact that C is a holomorphic universal cover of
any flat torus T, and the existence and uniqueness of the lift of a path - implies that f
lifts into a continuous map f̃ : C → C satisfying πτ ◦ f̃ = f ◦ πτ ′ . But since πτ ′ is a local
biholomorphism, in the neighborhood of a point z0 ∈ C, we have f̃ = σz0,τ ◦ f ◦ πτ ′ where
σz0,τ is a local holomorphic inverse of π near z0. Hence, f̃ is holomorphic.
Now, as πτ ◦ f̃ = f ◦ πτ ′ we have that for all z ∈ C and γ′ ∈ Γτ ′ : f̃(z+ γ′) = f̃(z) + γz for
some γz ∈ Γτ . But z ∈ C 7→ γz ∈ Γτ is continuous (even holomorphic) and so is constant
by connectedness. Differentiating the previous equality yields f ′(z + γ′) = f̃(z) for all
γ′ ∈ Γτ ′ . We infer that f̃ ′ is holomorphic and Γτ ′ periodic and thus bounded on C, it
is hence constant by Liouville’s theorem. Finally, f̃(z) = αz + β for some α ∈ C∗ and
β ∈ C.
Then, f̃(1) ≡ f̃(τ ′) ≡ f̃(0) = β mod Γτ which amounts to the existence of a, b, c, d ∈ Z
verifying

f̃(τ ′) = ατ ′ + β = aτ + b+ β,

f̃(1) = α + β = cτ + d+ β.

Finally, we obtain:
τ ′ = aτ + b

cτ + d
.

Applying the same reasoning to f−1 gives integers a′, b′, c′, d′ satisfying τ ′ = a′τ+b′

c′τ+d′ . But,
the previous formulas define in fact an action of GL2(Z) on C by homography given by(
a b
c d

)
· z := az+b

cz+d . Hence,
(
a b
c d

)
∈ SL2(Z). Moreover, we compute ℑ(τ ′) = ad−bc

|cτ+d|2 ℑτ >

0. It follows that ad− bc = 1 and
(
a b
c d

)
∈ GL2

+(Z) = SL2(Z) the connected component

of id in GL2(Z). The action GL2(Z) ↷ C induces an action PSL2(Z) ↷ H2 as the
computation of ℑτ ′ shows.

Conversely, if τ ′ = aτ+b
cτ+d for some

(
a b
c d

)
∈ SL2(Z), then f : Tτ ′ 7→ Tτ

[z] 7→ [(cτ + d)z] is

a well defined holomorphic map with inverse f−1 : [z] 7→ [ z
cτ+d ].

We can thus state the following theorem.
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Theorem (Classification of flat tori). Let T and T′ be two flat tori with respective
associated lattices Γ = Zv1 ⊕ Zv2 and Γ = Zv′

1 ⊕ Zv′
2. We can suppose that v1

v2
,
v′

1
v′

2
∈ H2,

relabeling if necessary. The following assertions are equivalent.

1. T and T′ are conformally equivalent,

2. Γ and Γ ′ are similar, i.e. Γ ′ = λΓ for some λ ∈ C′,

3. denoting τ = v1
v2

(respectively τ ′ = v′
1
v′

2
) the modulus of T (respectively T′), we have

τ ′ = aτ+b
cτ+d =:

(
a b
c d

)
· τ for some

(
a b
c d

)
∈ PSL2(Z).

2.5.4 Modular curve
The previous discussion shows that the moduli space of flat tori M1 can be identified
with the quotient space M := H2/PSL2(Z).

Note that PSL2(Z) is a discrete subgroup of PSL2(R), a so-called Fuschian group.
A fundamental region for a topological group action G↷ X is a closed set F such that

• ⋃
g∈G

g · F = X,

• F̊ ∩ g · F̊ = ∅ for all g ∈ G \ {1}.

We want to find a fundamental region F for the action of PSL2(Z) on H2. Define
Dp(PSL2(Z)) := {z ∈ H2 : dH2(z, p) ≤ dH2(z, h(p)) = dH2(h(z), p) for all h ∈ PSL2(Z)} the
Dirichlet region for PSL2(Z) at p. We have that p ∈ Dp(PSL2(Z)) and as the action
is discrete, Dp(PSL2(Z)) contains a neighborhood of p. Let h0 ∈ PSL2(Z). The equal-
ity dH2(z, p) = dH2(z, h(p)) describes the hyperbolic orthogonal bisector of the geodesic
through p and h0(p). Hence the inequality dH2(z, p) ≤ dH2(z, h(p)) corresponds to a
hyperbolic half-plane containing p. Dp(PSL2(Z)) is thus an intersection of hyperbolic
half planes and is consequently a hyperbolically convex region - a hyperbolic polygon if
there are finitely many of such half planes. The rest of the discussion aims at showing the
following lemma.

Lemma. The Dirichlet region of any point not fixed by PSL2(Z) is a fundamental region.

Proof. Let z1 ∈ H2 and z0 be a point of least hyperbolic distance to p in the PSL2(Z)-orbit
of z1. Such a z0 exists: the orbit Oz1 of z1 is discrete, so there exists a hyperbolic disk
∆(z1, ε) centered at z1 and of radius ε that contains no other point of Oz1 except z1. We
have thus an open cover ⋃

h∈PSL2(Z)
h (∆(z1, ε)) of Oz1 in pairwise disjoint open subsets each

containing exactly one element of Oz1 . Let r be sufficiently large so that the compact
hyperbolic disc ∆(p, r) contains at least one element of Oz1 with its surrounding hyperbolic
disc of radius ε

2 . By compactness, there is only finitely many elements of Oz1 within
this disc. It suffices to choose then an element z0 closest to p in this finite family. We
have dH2(z0, p) ≤ dH2(h(z0), p) for all h ∈ PSL2(Z) by construction. Hence Dp(PSL2(Z))
contain at least one point of each PSL2(Z)-orbit. Next, we want to show that two distinct
points z1, z2 in the interior of Dp(PSL2(Z) cannot lie in the same PSL2(Z)-orbit. If a

37



point z in Dp(PSL2(Z) satisfies dH2(z, p) = dH2(h(z), p) for some h ∈ PSL2(Z), h ̸= id,
then z lies in the boundary of Dp(PSL2(Z)) - more precisely on the orthogonal bisector of
the geodesic segment through p and h(p) ̸= p. Hence interior points cannot belong to the
same orbit. Finally, we showed that Dp(PSL2(Z)) is a connected fundamental region.

An explicit computation of the metric shows that in fact

Dp(PSL2(Z)) =
{
z ∈ H2 : |h(z) − p

z − p
| ≥ 1

|cz + d|
for all h =

(
a b
c d

)
∈ PSL2(Z)

}
. (2.2)

We now want to determine Dp(PSL2(Z)) for a suitable choice of p ∈ H2. Let k > 1.

We first show that ki is not fixed by a nontrivial h ∈ PSL2(Z). Indeed, if h =
(
a b
c d

)
∈

PSL2(Z), we have h(ki) = aki+b
cki+d = ack2+bd+(ad−bc)ki

c2k2+d2 , hence if ki is a fixed point of h,
we have c2k2 + d2 = 1 so c = 0, d = ±1 and h(ki) = aki + b = ki so a = 1 and
b = 0, i.e. h = ±id. Let us determine Dki(PSL2(Z)). Let z ∈ Dki(PSL2(Z)). Putting
h = T : z 7→ z + 1 or h = T−1 : z 7→ z − 1 in (2.2) gives |z ± 1 − ki| ≥ |z − ki| which
shows z is closer to ki than to ki ± 1 (for the standard Euclidean metric). Therefore
Dki(PSL2(Z)) ⊆

{
z ∈ H2 : −1

2 ≤ ℜz ≤ 1
2

}
. Moreover let h = S : z 7→ −1

z
. Then | −1

z
−ki|

|z−ki| ≥
1

|z| so |1 + kiz|2 ≥ |z − ki|2 which leads to, after expanding, (k2 − 1)|z|2 ≥ k2 − 1. Finally:
Dki(PSL2(Z)) ⊆ F :=

{
z ∈ H2 : |z| ≥ 1, |ℜz| ≤ 1

2

}
.

In fact the previous inclusion is an equality. Indeed, first note that Dki(PSL2(Z)) is
symmetric with respect to the imaginary axis. For, let σ : z 7→ −z̄. As σ sends geodesics
on geodesics, it is an isometry. And for all h ∈ PSL2(Z), as σ ◦ h ◦ σ ∈ PSL2(Z):
dH2(σ(z), h(ki)) = dH2(σ(z), h ◦ σ(ki)) = dH2(z, σ ◦ h ◦ σ(ki)) ≥ dH2(z, ki) = dH2(σ(z), ki).
Therefore σ(z) ∈ Dki(PSL2(Z)) for all z ∈ Dki(PSL2(Z)). We claim that the following
lemma is true.

Lemma. Let z, w ∈ F . Moreover, suppose that there exists h ∈ PSL2(Z) \ {id} such that
h(z) = w. Then w = z or w = σ(z) and in the latter case z, w ∈ ∂F .

Proof. Indeed, if h =
(
a b
c d

)
∈ PSL2(Z) maps z to w = h(z) then:

|cz + d|2 = c2|z|2 + 2cdℜz + d2

≥ c2 − cd+ d2 = (c− d)2 + cd

≥ 1.

This shows that ℑw = ℑz
|cz+d|2 ≤ ℑz. By interchanging the roles of z = h−1(w) and w, we

obtain ℑz ≤ ℑw. Thus ℑz = ℑw and |cz + d|2 = 1 and all the previous inequalities are
equalities. It follows that

(c− d)2 + cd = 1 (2.3)
and

c2(|z|2 − 1) + cd(2ℜz + 1) = 0. (2.4)
There are three possibilities:
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Figure 13: In blue: (part of) the triangulation induced by the action PSL2(Z) ↷ H2.
Each triangle of this triangulation is a fundamental region. In grey: the fundamental
region F =

{
z : |z| ≥ 1, |ℜz| ≤ 1

2

}
for this action. Wikipedia.

i) c = 0 and d = ±1, so h = T±1 and so z, w lie on the two vertical half-line of the
boundary of F .

ii) c = ±1, d = 0 which implies that |z| = 1 by equation (2.4). We have then
h : z 7→ az∓1

±z = ±a − 1
z

= ±a − z̄ with a = 0,−1 or 1 because h(z) ∈ F . If a = 0
then h = S which acts as σ on S1 ∋ z, w. If a = ±1, then z = ±1+i

√
3

2 = {eiπ
3 , e2iπ

3 }
and z is fixed by h.

iii) c = d = ±1 which implies by equation (2.4) that |z| = 1 and ℜz = −1
2 and so

z = e2iπ
3 . Then, as h(z) ∈ F and as it has the same imaginary part as z, we have

h(z) = z or h(z) = ei
π
3 = σ(z).

Finally, if z ∈ F , as Dki(PSL2(Z)) is a fundamental region, there exists h ∈ PSL2(Z)
with h(z) ∈ Dki(PSL2(Z)) ⊆ F . By the previous discussion, z = h(z) or z = σ ◦ h(z). In
both cases, we have z ∈ Dki(PSL2(Z)).

We thus showed that M is the quotient of F by the modular group PSL2(Z) generated
by T : z 7→ z + 1 and S : z 7→ −1

z
. F being delimited by three incident geodesics, it is

thus a hyperbolic triangle with vertices e±2iπ
3 and an ideal vertex at ∞. It induces thus a

hyperbolic tiling of H2 given by F and all its images by elements of PSL2(Z) with interiors
pairwise disjoint. Some representation of F and its image under some element of PSL2(Z)
are given in Figure 13.

One can show that M can be endowed with a complex structure and is thus a Riemann
surface. We can easily show that M is not compact. Indeed, consider the sequence (ki)k≥1.
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Then every element of this sequence admits a unique representative in F , namely itself.
Hence, for every point z ∈ F , Taking the image in M of a Euclidean open disk of radius
1
2 surrounding z, we see that ki does not belong eventually to this neighborhood of z.
Hence (ki)k≥1 does not admit an accumulation point and M is not compact.

In fact, one can show that M admits a compactification M with a unique point at
infinity: M \ M is reduced to a point.

2.6 Links between topological, PL and smooth struc-
tures on a surface

In this section, we investigate the links between topological, PL and smooth structures
one can put on a surface. It appears that they are all equivalent in some sense.

2.6.1 Topological and PL structures
First, every polyhedral surface admits a canonical topological structure as a metric space.

Conversely, the theorem of triangulation of Radò shows that every topological space
admits a PL structure. A PL structure being a topological atlas where transition maps
are PL.

The link between the two can even be made stronger. Every PL homeomorphism
between polyhedral surfaces induces a homeomorphism as topological surfaces. There is a
converse to this statement, the Hauptvermutung for surfaces: every homeomorphism of
triangulated topological surfaces can be approximated by PL homeomorphisms (for the
C0-norm). Therefore, a topological structure on a surface induces a unique PL structure -
and vice-versa.

The idea of a proof is the following, and can be found in [Moi13]. Suppose we are given
a homeomorphism between two topological surfaces f : S1 → S2 and ε > 0. As S1 and S2
admit triangulations, it is not restrictive to suppose that S1 = |T1| and S2 = |T2| are the
geometric realizations of simplicial triangulations T1 and T2 respectively. Let T 1

i be the 1-
skeleton of Ti, i.e. the collection of all the edges and vertices of T1. |T 1

1 | is thus a geometric
graph. Then f restricts to a homeomorphism f1 := f||T 1

1 | : |T 1
1 | → f(|T 1

1 |) ⊂ S2. We
want to approximate f1 by a PL homeomorphism F1 : |T 1

1 | → S2 such that F||T 0
1 | = f||T 0

1 |,
where T 0

1 stands for the vertices of T1. The idea is to first subdivide T1 (for example
uniformly) so that the diameter of the image of each edge is sufficiently small (less than
ε/3). Then to consider small discs surrounding the image of each vertex of T1, and a
regular neighborhood Nε′(e′) := {x : d(x, e′) < ε′} of the images of each edge. Finally
using the fact that each such neighborhood is brokenline-wise connected, and with some
technicalities, it is possible, for each edge e joining vertices v and w, to approximate its
image by a broken line at distance at most ε of f(e) in such a way that two broken lines
associated to different edges can only intersect at end points. It suffices then to define F1
to be the PL (homeomorphism) sending each edge e onto the broken line associated to e.

Let T ′
1 be a subdivision of T1. We can construct F1 as before, and for each t ∈ T ′

1, each
F1|∂t can be extended to give a PL homeomorphism F2,t. We want to chose T ′

1 and ε so that
the PL homeomorphism F2,t fit together to give a PL homeomorphism F2 : |T ′

1| → |T2| at
distance at most ε to f . Subdividing T1 sufficiently, we can suppose that the diameter of
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the image of each triangle of T ′
1 is at most ε/3. We chose then F1 to be a ε′-approximation

of f||T ′1
1 | where ε′ is less than ε/3 and less than the minimum distance between the images

of two vertices. Then, we extend F1 into F2,t for all t ∈ T ′1
1 giving a PL continuous map

F2. As F2(t) ⊂ Nε/3(f(t)), we have that F2 is an ε-approximation of f . It remains to
show that F2 is a homeomorphism. To do this, it suffices to show that F2 is injective that
is the sets IntF2(t) are pairwise disjoint. But if t1 ̸= t2, then t2 has a vertex v which does
not lie in t1 and we have F2(t1) ⊂ Nε′(f(t1)) with ε′ ≤ d(f(v), f(w)) for all vertex w of
t1. Hence v ̸∈ F2(t1) and as F2||T ′

1|1 is bijective, it ensures that IntF2(t1) and IntF2(t2) are
disjoint.

2.6.2 Topological and smooth structures
Every smooth differential surface is by definition a topological surface.

Conversely, one can show that every topological surface admits a smooth structure.
Moreover, the smooth structure is essentially unique as it can be shown that every
homeomorphism between smooth surface is isotopic - i.e. can be continuously deformed -
to a smooth diffeomorphism. We will sketch the proof of these two assertions. We refer to
the very well written paper by Hatcher [Hat13] for further details.

We will admit the following theorem, which is central in the proof.

Theorem (Handle Smoothing). Let S be a smooth surface. Then:

0. A topological embedding R2 → S can be isotoped to a smooth embedding in a
neighborhood of the origin, staying fixed outside a larger neighborhood of the origin.

1. Denote D1 = [0, 1]. A topological embedding D1 × R → S which is a smooth
embedding near ∂D1 ×R can be isotoped to a smooth embedding near a neighborhood
of D1 × {0}, staying fixed outside a larger neighborhood of D1 × {0} and near
∂D1 × R.

2. A topological embedding D2 → S which is a smooth embedding in a neighborhood
of ∂D2 can be isotoped to be a smooth embedding on all of D2, staying fixed in a
smaller neighborhood of ∂D2.

Let S be a topological surface without boundary, together with a countable atlas
(Vi, φi)i∈N. Denote hi = φ−1

i local parametrizations of S. As every simply connected open
subset of R2 is homeorphic to R2, we can suppose hi : R2 → S. We will construct smooth
parametrizations of Un := ∪n

i=0hi(R2) by induction. For n = 0 there is nothing to do as h0
is a local parametrization of U0 = V0. Consider the induction step of extending a smooth
structure from Un−1 to Un. Let W = h−1

n (Un−1). This is an open set in R2. One can show
that W admits a triangulation T . Then, by using 0 at each vertex of T , we obtain a new
topological embedding hn that is smooth on a neighborhood of the 0-skeleton T 0 of T .
Then, every edge of T admits a tubular neighborhood in W that is homeomorphic to
D1 ×R. We can thus apply 1 on each such tubular neighborhood to get a new embedding
hn which is smooth on a neighborhood of the 1-skeleton T 1 of T - since hn remains fixed
in a neighborhood of each edge. Finally, applying 2 to each triangle of T , we get a global
smooth embedding hn|W : W → Un−1. The new hn thus constructed gives a compatible
local parametrization for Un. This shows that S admits a smooth structure.
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If S has a non empty boundary, then it is possible to construct a (collar) neighborhood
of ∂S that admits a smooth structure. Then it suffices to apply the method in the non
boundary case to extend this smooth structure on all of S.

In fact, the smoothing procedure previously described can be applied to every home-
omorphism f : S → S of the smooth surface S, if S has an empty boundary. Using
once again a collar neighborhood of ∂S, this extends to every surface. Hence every
homeomorphism of a smooth surface is isotopic to a smooth diffeomorphism.

2.7 Translation surfaces
In this section, we discuss some basic definitions and properties about translation surfaces
which are polyhedral surfaces of a certain type: they are gluing of polygons where
gluing maps are translations. We give some equivalent definitions that enable to handle
them better from a complex analytic and algebraic point of view. We then define their
moduli space and give several useful properties about them. Finally, we focus on genus
2 translation surfaces, and give canonical decompositions for them: they are either the
gluing of a L polygonal shape, or a Z polygonal shape. References for this section include
[DHV24], [FM13], [Hub06], [Mas22], [Mum71], [McM], [Pet24], [Tro86], [Vee86], [Vee90],
[Wri15] and [Yoc10].

2.7.1 Definitions
Constructive definition. A translation surface Σ is an orientable polyhedral surface
where all the polygons are given in a same Euclidean plane and gluing maps are taken to
be translations. For example, every flat torus is a translation surface. As a polyhedral
surface, a translation surface is flat except at possible singularities. Let v be a singularity
of Σ. We will show that it has conical angle αv = 2kvπ for some kv ∈ N∗. Indeed, consider
a reciprocal image w ∈ R2 of v by the canonical projection. Let e, e′ be the edges incident
to w in the plane. Consider the equivalence relation on oriented edges induced by: e ∼ e′

if e and e′ contain both a vertex that projects to a same point in Σ which is the source
of e and e′. Clearly e ∼ σ(e) for all edge e where orientation is reversed, and the same
holds for two adjacent edges. Now denoting Ov = {e0, ..., em} the equivalence class of
oriented edges that contain a vertex that projects to v as a source, labeling such that
ei and ei+1 are adjacent, we have αv =

m∑
i=0

∠(−→ei ,−−→ei+1) where indices are taken modulo

m. But as e ∼ σ(e) - with orientation reversed - the sum is of the form
kv∑
k=0

−→ek
−−−→
σ(ek) by

Chasles’ relations. As e and σ(e) are translates of each other, the previous sum is equal
to 2kvπ. The number kv − 1 is called the order of the singularity v.

Analytic definition. Let Σ be a translation surface obtained from the gluing of a
family P of polygons. Given an edge e belonging to some polygon Pe ∈ P, consider the
(non empty) set Te of all triangles that contain the edge e as one of their edges and such
that their third vertex is a vertex of Pe. Now let e, e′ be paired edges, and let τ be the
translation sending e on e′. Then t ∪ τ(t′) ⊂ R2 ≃ C is a planar quadrilateral whose
interior is denoted Vt,t′ . Denote also Ut,t′ the interior of the image of t ⊔ t′ in Σ. Vt,t′ is
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naturally in bijection with t̊ ∪ e ⊔ t̊′ which is itself in bijection with Ut,t′ by the canonical
projection. The inverse of this bijective map from Vt,t′ to Ut,t′ is denoted φt,t′ : Ut,t′ → Vt,t′ .
It is a homeomorphism.

Denote V (Σ) the (finite) set of vertices of Σ (singularities or not). Then the domains
Ut,t′ form an open cover of Σ \ V (Σ). And the transition map φt1,t′1 ◦ φ−1

t0,t′0
is equal to the

composition τ1 ◦ τ−1
0 of the translations defining the Vti,t′i . Hence this defines a complex

structure on Σ \ V (Σ). Now let v ∈ V (Σ), and let Uv be an open disc surrounding v
such that the Uv are pairwise disjoint. Its preimage under the canonical projection is
a union of circular sectors S1, ..., Sl where Si surrounds a vertex vi whose angle at vi is
θi. Suppose that we label the Si such that their straight boundaries are delimited by
edges ei, fi with fi parallel to ei+1. Denoting Θi =

i−1∑
j=1

θi, we define a map on each Si

by φiv(vi + ρei(Θi+θ)) = ρe
1

kv
(Θi+θ), for 0 ≤ ρ ≤ r, 0 ≤ θ ≤ θi. The φiv match together

to define a homeomorphism φv : Uv → D(0, r) where D(0, r) denote the Euclidean disk
of center 0 and radius r. Adjoining the charts (Uv, φv) to the atlas (Ut,t′ , φt,t′) gives an
atlas on the whole Σ. The transition maps are either the previous translations, the
φt,t′ ◦ φ−1

v : z 7→ (z − z0)p + z1 and the φv ◦ φ−1
t,t′ : z 7→ (z + z0)

1
p + z1 which are all

holomorphic - the last one is holomorphic since it is defined on π−1(Uv) ∩ Vt,t′ which is an
angle sector whose apex is v hence a branch of logarithm can be holomorphically defined.

Σ can thus be endowed with a complex structure and is a Riemann surface. Moreover,
by pulling back the canonical holomorphic 1-form dz on C via the charts φt,t′ , we obtain
compatible - as transition maps are translation and thus have trivial derivative - 1-
forms that glue together to form a holomorphic 1-form ω on Σ \ V (Σ). If v is a flat
vertex, it is possible to cut and paste the polygons defining Σ so that v lie now in the
interior of a polygon - recall that every polygon can be triangulated. So ω is in fact
well defined on Σ \ Sing(Σ). We impose wv ≡ 0 at a singularity v. This defines a
holomorphic 1-form. Indeed, ω is holomorphic when read through charts of the form φt,t′ ,
and at a singularity v, we have: Fv∗ω : z 7→ ωF−1

v (z)(dF−1
v ·). But, ωF−1

v (z) = φ∗
t,t′dz and

dF−1
v = dφ−1

t,t′ · d(φt,t′ ◦ F−1
v ) : z 7→ dφ−1

t,t′ · (kvzkv−1). Hence, Fv∗ω : z 7→ kvz
kv−1dz and ω

is holomorphic at v which is a zero of order kv − 1.
Conversely it can be shown that given a pair (Σ,ω) where Σ is a Riemann surface and

ω is a holomorphic 1-form, Σ is a polyhedral surface with an atlas on Σ \ Sing(Σ) whose
transition maps are translations. It is thus a translation surface as defined previously.
A nice proof can be found in [DHV24]. The idea is to construct an atlas of Σ \ Sing(Σ)
by integrating ω in charts. The transition maps of the new atlas are then translations.
Then, it suffices to triangulate Σ by flat Euclidean triangles with Sing(Σ) being a subset
of the vertices of the triangulation. All the difficulty lies in the construction of such a
triangulation.

Geometric definition. As we saw, in the constructive definition of a translation surface
Σ, there is an atlas (Ut,t′ , φt,t′) of Σ \ Sing(Σ) whose transition maps are translations.
Moreover, we saw that all v ∈ Sing(Σ) admits a local chart (Uv, φv) that reads through
the φt,t′ as z 7→ z1/kv . This atlas is called a translation structure on Σ.

Conversely, if such an atlas exists, then as before this defines a complex structure on
Σ. Moreover, we can as previously glue the φ∗

t,t′dz to obtain a holomorphic 1-form on
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Σ \ Sing(Σ) that extends entirely on Σ, with a zero of order kv − 1 at each singularity v.

2.7.2 Moduli spaces
The equivalence between the geometric and analytic definitions enables us to have an
algebraic point of view on the family of all possible translation surfaces of a given genus g.

Definition of H(µ) and Hg. Let g ≥ 0 be a natural number and Sg the orientable
and closed topological surface of genus g. Let also µ = (m1, ...,mn) be a multi-index of
natural number. We define:

HG(µ) := {maximal translation structures on Sg with n singularities of order m1, ...,mn} / ∼g

HA(µ) := {(Σ,ω) : Σ Riemann surface of genus g and ω holomorphic 1-form on Σ with
n zeros of order m1, ...,mn} / ∼a

where we identify two maximal translation structures T1 and T2 for ∼g if there is
homeomorphism f : Sg → Sg preserving orientation such that f ∗T2 := {(f−1(U), φ ◦ f) :
(U,φ) ∈ T2} = T1. Note that T1 ∼g T2 implies that those two atlases have the same
number of singularities, and each singularity and its image have the same order. In
turn, we identify two pairs (Σ1, ω1) and (Σ2, ω2) for ∼a if there exists a biholomorphism
f : Σ1 → Σ2 such that f ∗ω2 = ω1.

We show that, in fact, HG(µ) and HA(µ) are in bijection. We denote by H(µ) the
common space they represent. The following is devoted to demonstrating this bijection.

Let (Σ,ω) be a pair composed by a Riemann surface and a holomorphic 1-form. The
complex structure together with the holomorphic 1-form allows to define a translation
structure. Indeed, for p0 away from the zeroes of ω, take a simply connected neighborhood
Up0 of p0 and define φp0 : p ∈ Up0 →

∫ p
p0
ω. For p ∈ Up0 ∩ Up1 , we have then: φp0(p) =∫ p1

p0
ω + φp1(p). Hence transition maps are translations. Moreover, near a zero p of ω, by

local normalization (see [Sik18]), ω reads through a chart (U,φ) near p as ω := f(z)k−1dz
where f : φ(U) → D(0, r) is a biholomorphism with f(0) = 0 (r > 0) and k ≥ 2. We
look for a biholomorphism g satisfying g∗(ω) = zk−1dz which is equivalent to zk−1 =
f ◦ g−1(z)k−1 × 1

g′◦g−1(z) or g(z)k−1g′(z) = f(z)k−1. This solves to gk(z) = kF (z) where
F is any primitive of fk−1. It suffices to take the k-th root of F - which can be built
holomorphically as F is bounded - to find a biholomorphism g such that ω reads zk−1dz in
the chart g ◦ φ =: ψ. Hence, for every other chart φ0 defined away from a singularity, we
have ψ∗ ·ω = zk−1dz = (ψ◦φ−1

0 ◦φ0)∗ ·ω = (ψ◦φ−1
0 )∗ ·dz. Hence (φ0 ◦ψ−1)′(z) = zk−1 and

φ0 ◦ ψ−1(z) = zk assuming it sends the origin to itself. Finally, we defined a translation
structure on Σ.

Now, suppose we are given two Riemann surface endowed with 1-forms (Σ1, ω1) and
(Σ2, ω2) which have maximal translation structures equivalent through a homeomorphism f .
Then, f reads through charts φ1 of Σ1 and φ2 of Σ2 as φ2◦f ◦φ−1

1 which is a transition map,
and hence is holomorphic. The same holds for f−1, which is therefore a biholomorphism.
Now, for v ∈ Σ1 \ Sing(Σ1), we have by construction a chart φ2 of Σ2 \ Sing(Σ2) near f(v)
such that: (f ∗ ·ω2)v = f ∗φ∗

2 ·dz = (φ2 ◦f)∗ ·dz = ω1v. Hence f ∗ ·ω2 = ω1 on Σ1 \Sing(Σ1).
It follows that f must send Σ1 \ Sing(Σ1) on Σ2 \ Sing(Σ2). Hence f is a bijection from
Sing(Σ1) to Sing(Σ2). Finally, near a singularity v of Σ1, for some local coordinates z
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near v and w near f(v): (f ∗ω2)v = f ′(v)ω2f(v) = f ′(v)wkf(v)−1dw = ω1v = zkv−1dz. Hence
f sends zeros of ω1 onto zeros of ω2 preserving multiplicities.

Conversely, if there exists a biholomorphism f : Σ1 → Σ2 such that f ∗ω2 = ω1, then f
is a orientation preserving homeomorphism (Σ1,T1) → (Σ2,T2) - where Ti is a maximal
translation structure on Σi. Moreover, f ∗T2 is a subatlas of T1. Indeed, for all charts
(U2, φ2), (V2, ψ2) in T2, f−1(U2) is open and (φ2 ◦ f) ◦ (ψ2 ◦ f)−1 = φ2 ◦ψ−1

2 are transition
maps of T2 hence translations or of the form z 7→ zk or its inverse. Hence f ∗T2 ⊆ T1
by maximality. The same reasoning applied to f−1 shows that f−1∗

T1 ⊆ T2. Thus
f ∗T2 = T1 and T1 ∼g T2.

Finally, we show that we can associate to a translation structure T a pair (Σ,ω)
composed of a Riemann surface and a holomorphic one-form, and vice-versa, and that two
translation structures T1 and T2 are identified in HG(µ) if and only if their associated
pairs satisfy (Σ1, ω1) ∼a (Σ2, ω2).

Now let Σ ∈ H(µ) be a translation surface of genus g obtained by gluing a family
P = {P1, ..., Pp} of polygons with translated and facing paired edges. By cutting the
polygons in P if necessary, we can suppose Pi convex for all i - for example a triangle.
Denote by 2N the total number of edges of the polygons, ni the number of vertices of Pi.
We have that 2N = ∑p

i=1 ni. By padding µ with 0’s, to account for the vertices with angle
2π ”resulting from the Pi”, we may assume that n is equal to the number of vertices after
identification of the paired edges.On the one hand, we have by counting the total angle
at every conical point:

n∑
i=1

2(mi + 1)π =
p∑
j=1

(nj − 2)π. On the other hand, Euler formula

gives: χ(Σ) = n−N + p = n− 1
2

p∑
i=1

ni + p = 2 − 2g. Hence:

n∑
i=1

mi = 2g − 2. (2.5)

We define then the moduli space of all translation structures, up to equivalence, on
the closed orientable surface Sg of genus g:

Hg =
⋃

µ = (m1, ...,mn)
n∑
i=1

mi = 2g − 2

H(µ).

Teichmüller space of translation structures. Let (Σ,ω) be a translation surface
with underlying topological surface Sg, µ a multi-index which represents the multiplicities
of the zeros of ω, and denote Diff0(Sg) the group of diffeomorphisms of Sg homotopic to
the identity and Z = {x1, ..., xn} ⊂ Sg the set of zeros of ω. We have an action of the
group Diff0(Sg, Z), formed by the elements of Diff0(Sg) fixing the zeros of ω, on the space
C (Sg, Z, µ) of translation structures of Sg with singularities Z of order given by µ, given
by pushing forward via f · (Σ,ω) = (f∗Σ, f∗ω) where f∗Σ denotes the Riemann surface
endowed with the atlas over Sg: {(f(U), φ ◦ f−1) : (U,φ) atlas of Σ}. We define then the
Teichmüller space of translation surfaces of type (Sg, Z, µ) the quotient space

Q(Sg, Z, µ) := C (Sg, Z, µ)/Diff0(Sg).
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Fix a universal cover π : (S̃g, x̃) → (Sg, x) of Sg. To each translation structure (Σ,ω)
on Sg we can associate a continuous map, the developing map

DΣ,ω : (S̃g, x̃) → (C, 0), p̃ 7→
∫ p̃

x̃
π∗ω.

Suppose DΣ,ω = DΣ′,ω′ . Then by change of variables: 0 =
∫ p̃
x̃
π∗ω−π∗ω′ =

∫ p̃
x̃
π∗(ω−ω′) =∫

γ ω−ω′ for all p̃ ∈ S̃g, where γ is the projection of a path from x̃ to p̃. This in turn implies
that ω = ω′ as one can see easily in local coordinates. Moreover, if f ∈ Diff0(Sg), we have
Df∗Σ,f∗ω(p̃) =

∫ p̃
x̃
π∗f ∗ω =

∫ p̃
x̃
(f ◦ π)∗ω =

∫
f◦γ ω =

∫
γ ω = DΣ,ω(p̃) as f is homotopic to

identity. Finally, we have a well defined mapD : Q(Sg, Z, µ) → C0(S̃g,C), [(Σ,ω)] 7→ DΣ,ω.
We transport the compact-open topology from C0(S̃g,C) to Q(Sg, Z, µ) thanks to D.

We saw, in the previous paragraph, that H(µ) = HA(µ), where the identification
(Σ,ω) ∼a (Σ ′, ω′) is given by the action of Diff+(Sg) on C (Sg, Z, µ). It follows that
H(µ) = C (Sg, Z, µ)/Diff+(Sg) ≃ Q(Sg, Z, µ)/MCG(Sg) where we denoted MCG(Sg) :=
Diff+(Sg)/Diff0(Sg) the mapping class group of Sg. Hence H(µ) inherits the quotient
topology.

Period coordinates. Let (Σ,ω) be a translation surface of genus g with n singularities
x1, ..., xn ∈ Σ in the Teichmüller space Q(Sg, Z = {x1, ..., xn}, µ). A period of ω is a
integral of the form

∫
γ ω where γ is a piecewise C1 path on Sg. Denote α1, ..., α2g piecewise

C1 representatives of a basis of π1(Sg, x1), and ci a piecewise C1 simple path from x1 to
xi+1, 1 ≤ i ≤ n− 1. We define the period coordinates of Σ with respect to the basis
B := (α1, ..., α2g, c1, ..., cn−1) to be the complex numbers:

ΦB(ω) :=
(∫

α1
ω, ...,

∫
α2g

ω,
∫
c1
ω, ...,

∫
cn−1

ω

)
.

Note that, if (Σ2, ω2) ∼ (Σ1, ω1) in Q(Sg, Z, µ) and if f ∈ Diff0(Sg) is such that
f ∗ω2 = ω1, then by change of variables formula: ΦB(f ∗ω2) = Φf(B)(ω2). Indeed, as f is
homotopic to the identity, f∗ = id and thus f(B) = B. Note that this is generally not the
case if f is only supposed to be a biholomorphism between Σ1 and Σ2.

This defines a family of local charts for Q(Sg, Z, µ). A proof using so-called zippered
rectangle constructions can be found in [Yoc10]. Moreover, this zippered rectangle
constructions allows to canonically associate a Riemann surface Σω to a holomorphic
one-form ω so that Σω is biholomorphic to Σω′ if and only if there exists f ∈ Diff+(Sg)
pulling back ω′ to ω.

These charts can be used to endow Q(Sg, Z, ω) with a complex structure of complex
dimension 2g + n − 1. This enables to define a structure of complex orbifold on H(µ),
that is roughly speaking a structure of complex manifold with isolated singularities.

Moreover, these period charts can also be used to define the topology of H(µ). A basis
for the topology is given by the π ◦ Φ−1

B (U) where U runs over all open subset of C2g+n−1

sufficiently small so that Φ−1
B is well defined on U , and π : Q(Sg, Z, µ) → H(µ) is the

above quotient map.

Digression: link between quadratic differentials on a Riemann surface and
the cotangent space to Riemann surfaces Teichmüller space. We give in this
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paragraph an alternate description of the topology of Q(Sg, Z, µ) and H(µ). We refer
to [FM13] and [Hub06] for this paragraph. Let Sg be the topological closed orientable
surface of genus g - we recall that Sg admits a unique smooth structure. We define the
Teichmüller space of Sg by

Tg =

(Σ, f) :
Σ a Riemann surface,

f : Sg → Σ an orientation preserving diffeomorphism
homotopic to identity

 / ∼

where ∼ identifies (Σ1, f1) and (Σ2, f2) if there exists a biholomorphism φ : Σ1 → Σ2 so
that f−1

2 ◦ φ ◦ f1 : Sg → Sg is homotopic to the identity. The moduli space Mg identifies
with a quotient of Tg. Indeed, let Φ : Tg → Mg, [(Σ, f)] 7→ [Σ] be the natural projection.
Φ is clearly surjective, and Φ([Σ, f ]) = π([Σ, g]) for all f, g ∈ Diff+(Sg). Hence, denoting
MCG(Sg) = Diff+(Sg)/Diff0

+ the mapping class group of Sg, we have the identification
Mg ≃ Tg/MCG(Sg) where MCG(Sg) acts on Tg by [h] · [(Σ, f)] = [(Σ, f ◦ h)].

A Beltrami differential on a Riemann surfaceΣ is a section of M(Σ) := L∞
∗ (TΣ, TΣ)

the subbundle of (almost everywhere and norm) bounded antilinear maps of the tangent
bundle TΣ that is (almost everywhere) less than 1 for the L∞ operator norm. Here,
a map g is antilinear if g satisfies g(u + λv) = g(u) + λ̄g(v) for all vectors u, v and all
complex scalar λ. Hence, a Beltrami differential µ reads in a local coordinate ζ as ν(ζ)dζ̄

dζ

where
(
ν(ζ)dζ̄

dζ

) (
w(ζ) ∂

∂ζ

)
= ν(ζ)w(ζ) ∂

∂ζ
. The space of R-linear functions from C to C is

of complex dimension 2 and admits for R-basis (dz : z 7→ z, dz̄ : z 7→ z̄). By this way, the
differential dfx at a point x of an application f : Σ1 → Σ2 between two Riemann surfaces,
seen as a R-linear map from TxΣ1 to Tf(x)Σ2, decomposes on this basis into

(
∂f
∂z̄

(x), ∂f
∂z

(x)
)

so that df = ∂f
∂z̄
dz+ ∂f

∂z
dz̄. Typically, if f : Σ1 → Σ2 is a smooth homeomorphism between

two Riemann surfaces such that for all x ∈ Σ1 in a local chart z at x, κ(f, x) :=
∂f
∂z̄

(x)
∂f
∂z

(x)
is bounded by a fixed constant 0 ≤ k < 1 - we say that f is quasi-conformal, then
µx = κ(f, x)dz̄

dz
glue together to define a Beltrami differential denoted µf . It can be shown

that every orientation preserving smooth diffeomorphism is quasi-conformal. Intuitively,
quasi-conformal maps are those whose differentials send infinitesimal circles into infinites-
imal ellipses of eccentricity that fits into an interval 0 < a < b < ∞. The measurable
Riemann mapping theorem gives a converse on C: if µ is a bounded measurable function
defined on some open set U ⊆ C and if µ has module (almost everywhere) less than
1, then there exists a quasi-conformal solution fµ : U → C to the Beltrami equation
∂f
∂z̄

= µ∂f
∂z

unique up to post-composition by an injective conformal map. In particular, it
implies that given a Beltrami differential µ on a Riemann surface Σ with an atlas (Ui, φi),
writing µ|Ui

= φ∗
i

(
µi

dz
dz̄

)
for some smooth functions µi, the Beltrami equations ∂ψ

∂z̄
= µi

∂ψ
∂z

admits quasi-conformal solutions ψi : φi(U) → C. The charts (Ui, ψi ◦ φi) defines then a
complex structure on Σ because if Ui ∩ Uj ̸= ∅, ψi and ψj ◦ φj ◦ φ−1

i are both solution of
the same Beltrami equation, hence ψi = f ◦ ψj ◦ φj ◦ φ−1

i for some injective holomorphic
function f and it follows that the transition map ψi ◦ φi ◦ φ−1

j ◦ ψ−1
j = f is holomorphic.

Moreover, uniqueness up to conformal map implies that this complex structure is inde-
pendent of the choice of the initial atlas (Ui, φi). Let us denote Σµ the so built complex
structure, and fix a complex structure Σg on Sg. We have a well defined natural projection
Φ : M(Σg) → Tg, µ 7→ [(Σµ, id : Σg → Σµ)], where we recall that M(Σg) denotes the
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Beltrami differentials on Σg which is an infinite dimensional unit ball of a Banach manifold
and hence whose topology is understood. One can show that there exists a unique complex
structure on Tg such that Φ is holomorphic. In turn, the complex structure on Tg allows to
provide the moduli space Mg with the quotient topology. Moreover, the local coordinates
computation enables to show that the cotangent spaces T ∗

[τ ]Tg identifies with the vector
bundle Q(Στ ) = Sym(T ∗Στ ⊗ T ∗Στ ) formed by the holomorphic quadratic differentials.
Denote ρ : T ∗Tg → Tg the canonical projection. The Teichmüller space identifies naturally
with the space of all complex structures on Sg up to pull back by an element of Diff0

+(Sg)
via the correspondences [(Σ, f)] 7→ [Σ] and [Σ] 7→ [(Σ, id : Σg → Σ)]. If A is a complex
structure on Sg, then for all φ ∈ Diff+(Sg): φ : (Sg,A) → (Sg, φ−1∗A) is holomorphic
and φ∗Q(φ−1∗A) = Q(A). Moreover, if g ≥ 2, the action of Diff0

+(Sg) on the family of
all complex structures on Sg is free, i.e. for all φ ∈ Diff0

+(Sg) \ {idSg} and all complex
structures A we have φ∗A ≠ A. Hence, if g ≥ 2, ρ−1([A]) is naturally identified with Q(A′)

for any A′ ∼ A. Finally, the map Q(Sg, Z, µ) → Q(Σ) ≃ ρ−1(Σ) ⊂ T ∗Tg
[(Σ,ω)] 7→ ω ⊗ ω

enables us

to identify Q(Sg, Z, µ) with a subspace of T ∗Tg which inherits its topology.
For this topology, if two translation moduli (Σ1, ω1) and (Σ2, ω2) are ”close” then

the Teichmüller moduli (Σ1, φω1) and (Σ2, φω2) are close too for the topology previously
mentioned on Tg where φω1 and φω2 are quasi conformal maps naturally associated to ω1
and ω2. Indeed, for g ≥ 2, by uniformization theorem, Σi ≃ H2/Γi where Γi < PSL2(R) is a
Fuschian group. Denote πi : H2 → Σi the canonical projection - in fact this is the universal
cover of Σi. Then πi is a local diffeomorphism thus π∗

i identifies M(Σi) ≃ MΓi(H2) where
MΓi(H2) denotes the space of Γi-invariant Beltrami differential. Here, we have to define
what we mean by the pull back of a Beltrami differential. Given f : Σ1 → Σ2 quasi
conformal between Riemann surfaces and µ a (bounded by 1 in norm) Beltrami differential
on Σ2, let z, w be respective local charts on Σ1 and Σ2 such that µ reads µ = [µ]dw̄

dw
. The

pullback is given by the formula

f ∗µ =
∂f
∂z̄

+ [µ] ◦ f ∂f
∂z

∂f
∂z

+ [µ] ◦ f ∂f
∂z̄

dz̄

dz
.

One can verify that g∗µf = µf◦g. Let µ ∈ MΓi(H2). Then µ̂ : z 7→
{
µz if z ∈ H2

0 if z ∈ H2∗ ∪ R ∪ {∞}
defines a Γi-invariant Beltrami differential on Ĉ, where we denoted H2∗ the lower half
plane. There exists then a unique solution f µ̂ of the Beltrami equation associated to
µ̂ fixing 0, 1,∞: the group action Aut(Ĉ) ↷ Ĉ of Möbius transformations on Ĉ is
sharply 3-transitive. By connectedness, we have a conformal map f µ̂|H2∗ : H2∗ → H2∗,
and a quasi conformal map f µ̂|H2 : H2 → H2 which projects to a quasi conformal
map φ̃i := πi ◦ f µ̂|H2 : H2 → Σi. Moreover, since µ̂ is Γi-invariant, we have for all
h ∈ Γi : (f µ̂ ◦ h ◦ f µ̂−1)∗

µ0 = f µ̂−1∗h∗f µ̂∗µ0 = f µ̂−1∗h∗µ = f µ̂−1∗µ = µ0, where we denoted
µ0 ≡ 0. Hence φ is a Möbius transformation, and it follows that φ̃i · Γi := φ̃i ◦ Γi ◦ φ̃−1

i

is a Fuschian group. Then, one can associate to the conformal map f µ̂|H2∗ : H2∗ → H2∗ a
quadratic differential S{f µ̂|H2∗} on H2∗ - its Schwarzian derivative - which is Γi-invariant
in such a way that Φ(µ) = Φ(ν) in Tg if and only if S{f µ̂|H2∗} = S{f ν̂|H2∗}. Hence it
defines a map Ψid : Tg → QΓi(H2∗) which can be used to give a topology to Tg com-
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patible with its complex structure. In fact, given any quasi conformal φ̃ : H2 → H2,
Mφ̃·Γi(H2) ≃ MΓi(H2) where φ̃ · Γi = φ̃ ◦ Γi ◦ φ̃−1 and we obtain by the same process
Ψφ̃ : Tg → Qφ̃·Γi(H∗) continuous. These are the local coordinates on Tg.

We can even endow Tg with a compatible metric, the Teichmüller metric:

d([(Σ1, f1)], [(Σ2, f2)]) = inf
f

lnKf

where Kf = sup
∂f
∂z̄
∂f
∂z

and the infimum is taken over all orientation preserving diffeomorphism
f : Σ1 → Σ2 such that f2 = f ◦ f1.

The stratum H(0). Let (Σ,ω) a representative of a modulus in H(0). We have then
2g−2 = 0 by equation (2.5), i.e. g = 1. Hence Σ is a flat torus. We have thus a forget map

Φ0 : H(0) → M1
[(Σ,ω)] → [Σ] . Conversely, given any flat torus T = C/Γ , denoting π : C → T

the universal cover and (Ui, φi) an analytic atlas on the torus, we can define ωi = φ∗
i dz|Ui

. If
Ui∩Uj ̸= ∅, we have ωi|Ui∩Uj

= φ∗
i dz|Ui∩Uj

= (φi◦φ−1
j ◦φj)∗dz|Ui∩Uj

= φ∗
jdz|Ui∩Uj

= ωj|Ui∩Uj

as φi ◦φ−1
j is a translation. Hence the ωi glue together to give a holomorphic 1-form ω on

Σ. And if ω′ is an other holomorphic 1-form on Σ, then π∗ω and π∗ω′ are two Γ -invariant
holomorphic 1-form on C, so they are constant by the maximum principle. Let a ∈ C∗ such
that π∗ω = aπ∗ω′ = π∗(aω′). We have thus π∗(ω−aω′) = 0 and ω−aω′ = 0 by injectivity

of π∗ - π being submersion ensures that π∗ is injective. Finally, posing f̃ : C → C
z 7→ az

and denoting Γ ′ = f(Γ ), f induces a biholomorphism f : Σ = C/Γ → C/Γ ′ ≃ Σ such
that π∗f ∗ω′ = (f ◦ π)∗ω′ = (π ◦ f̃)ω′ = f̃ ∗π∗ω′ = π∗(aω′) = π∗ω thus f ∗ω′ = ω. Finally,
we showed that Φ0 is bijective and in fact it gives a homeomorphism:

H(0) ≃ M1.

Mumford’s compactness criterion. For simplicity, we will deal with translation
surfaces of normalized total area (equal to 1). Denote Q(1)(Sg, Z, µ) the corresponding
moduli subspace, which is a real hyperspace of Q(Sg, Z, µ). First note that as the period
map is continuous, it is lower bounded on any compact subset K ⊂ Q(1)(Sg, Z, µ). Hence,
for a family of translation surfaces to be compact, their periods must be lower bounded.

For the converse, Mumford proved a very useful characterization of compact subset of
Mg when g ≥ 2.

Theorem. Let g ≥ 2 and let Mg be the moduli space of Riemann surfaces of genus g.
For all ε > 0, the subset:

{[Σ] ∈ Mg : all complete geodesics on Σ have hyperbolic length ≥ ε}

is compact.

We have to explain what we mean by hyperbolic length. Let π : H2 → Σ be the
universal cover of Σ and Γ denotes its group of deck transformations. As Γ < PSL2(R) =
Isom+(H2) is a Fuschian group, we have γ∗ds2

H2 = ds2
H2 for all γ ∈ Γ . Morevoer, we know

that the analytic structure on Σ is given by an atlas of the form (π(Ui), π−1
|π(Ui) : π(Ui) → Ui)
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where Ui ⊂ H2 is an elementary open set for the cover. Hence, the transition map on σ
are given by deck transformations. Finally, the metric ds2

H2 being Γ -invariant, it descends
into a metric dΣ on Σ such that π realizes an isometry between (H2, ds2

H2) and (Σ, ds2
Σ).

Mumford’s criterion enables us to characterizes compact subset of Q(1)(Sg, Z, µ). In-
deed, let ε > 0, and [(Σ,ω)] ∈ Q(1)(Sg, Z, µ). The Riemannian metric |ω|2 is well defined
on Σ \ Z outside the zeros Z of ω. As (Σ, ds2

Σ) and (Σ, |ω|2) defines the same conformal
structure outside the zeros of Σ, we must have |ω|2 = λds2

H2 for some smooth strictly
positive function λ on Σ. As Σ is compact, λ is upper bounded by some constant M . Let
γ be a closed complete geodesic on Σ. We thus deduce that ℓ|ω|2(γ) ≤ Mℓds2

Σ
(γ).

Note now that for two equivalent pair (Σ,ω) ∼ (Σ ′, ω′), if ω′ = f ∗ω, for some bi-
holomorphism f : Σ ′ → Σ homotopic to identity, and γ is a path on Σ ′, we have∫
γ |ω′| =

∫
f◦γ |ω| =

∫
γ |ω| by substitution of variables. Hence, for all M > 0,

Kε/M =
{

[(Σ,ω)] ∈ Q(1)(Sg, Z, µ) : all closed complete geodesics on Σ have |ω|2 length ≥ ε

M

}
⊆

{
([Σ,ω]) ∈ Q(1)(Sg, Z, µ) : all complete geodesics on Σ have hyperbolic length ≥ ε

}
,

is well defined and is included in some subset of Q(1)(Sg, Z, µ) which is similarly defined
as the compact subsets characterized by Mumford’s criterion.

Thus, it is reasonable to pretend that π(Kε/M) is relatively compact. It remains to
show that π(Kε/M) is compact to conclude that it is compact.

Finally we state:

Theorem (Compactness criterion, [Mas22]). Let g ≥ 2. A subset K ⊂ H(1)(µ) is compact
if and only if there exists ε > 0 such that for all [(Σ,ω)] ∈ K there exists a representative
[Σ ′, ω′] in Q(1)(Sg, Z, µ) with the |ω′|2-length of any complete geodesic on Σ ′ being greater
or equal than ε.

Note that we can replace complete geodesic with saddle connection in the previous
theorem characterizing compact subsets of H(1)(µ).

2.7.3 L decomposition for surfaces in H(2) and Z decomposition
for surfaces in H(1, 1)

In this section, we give explicit simple polygonal decompositions in the genus 2 case.
We will use the fact that every genus 2 translation surface (Σ,ω) admits a hyperelliptic

involution ρ, i.e. a holomorphic involutive and isometric automorphism of Σ acting as
−1 on homology and which sends every simple geodesic closed curve to a simple geodesic
closed curve, fixes the singularities of Σ among a finite number of fixed points. The
metric being given by the integral of |ω|2. Moreover we will use the fact that any maximal
collection of saddle connections - i.e. geodesics connecting two singularities - that do
not intersect each other in their interior is a triangulation.

L decomposition of an element of H(2). Let [(Σ,ω)] ∈ H(2), and let ρ a hyperelliptic
involution of Σ. Denote T a geodesic triangulation of Σ made of saddle connection. Then
not every saddle connection is mapped to itself by ρ. Otherwise, we would have that
each triangle of the triangulation would be mapped to itself. Now, let t be such a triangle
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delimited by simple geodesic curves α, β, γ. We have that ρ maps each boundary curve
to itself, and that the morphism induced by ρ in homology satisfies: ρ∗ = −1. This
implies, denoting ι the intersection form: ι(α, γ) = ι(ρ(α), ρ(γ)) = −ι(α, γ). Indeed,
as ρ is isometric and only has a finite number of fixed points, ρ(α) = α and ρ(γ) = γ.
Hence ι(α, γ) = 0 contradicting that t is a triangle. Let c be a saddle connection
not mapped to itself by ρ. Then the homology classes of c and ρ(c) are opposite as
ρ∗ = −1, and ρ(c) is a saddle connection. Finally, assuming that c and ρ(c) only
intersect at the singularity, c ∪ ρ(c) is a separating curve for Σ. Cutting Σ along c
and ρ(c) separates Σ into two components - as c and ρ(c) are homologous and only
intersects at the singularity - one of which is a cylinder and the other a torus with a slit.
Indeed, as ρ acts as −1 on homology, c ∪ ρ(c) is separating. Denote by C1 and C2 the
closure of the components bounded by this curves. Consider a tubular neighborhood of
c ∪ ρ(c) in these two components. Necessary, there is a component, denote it C1, such
that the corresponding tubular neighborhood admits 1 boundary component. While
the tubular neighborhood in the other component, denote it C2, admits 2 boundary
component. Otherwise, Σ would not be a manifold near its singularity.It follows by
inclusion-exclusion formula: −2 = χ(Σ) = χ(C1 ∪C2) = χ(C1) +χ(C2) −χ(C1 ∩C2). But
C1 ∩ C2 = c ∪ ρ(c) ≃ S1 ∨ S1. Hence χ(C1 ∩ C2) = −1. Finally, denoting gi the genus of
Ci, we have: χ(C1) = 2 − 2g1 − 1, χ(C2) = 2 − 2g2 − 2 and we deduce that g1 + g2 = 1.
All together, this gives a L decomposition of Σ (see Figure 14).

Z decomposition of an element of H(1, 1). The same way as in the previous
paragraph, if [(Σ,ω)] ∈ H(1, 1), consider a geodesic triangulation of Σ made of saddle
connections. Pick a triangle of this triangle t of this triangulation that connects the
two singularities. Then, the singularity that appears once as a vertex of t is fixed by
the hyperelliptic involution ρ. At most one of the edges of t is fixed by ρ by the same
reasoning as previously, hence t admits an edge c that connects the two singularities and
that is not fixed by ρ. Cutting Σ along c and ρ(c̄) decomposes the surface into two tori,
and Σ is obtained by the slit torus construction. Indeed, using again inclusion-exclusion
formula with the fact that C1 ∩ C2 = c ∪ ρ(c) ≃ S1 and that c ∪ ρ(c) corresponds to one
boundary component of C1 and C2, we deduce that gC1 + gC2 = 2. Hence Σ admits a Z
shape decomposition (see Figure 15).

Other arguments to show the existence of a L decomposition. We give an
alternative method to prove the existence of the previous L and Z decompositions,
detailing the case of H(2).

Fix (Σ,ω) a translation surface of H(2). Let p be a Weierstrass point of Σ, i.e. a fixed
point of ρ, that is not a singularity of Σ. Consider a geodesic closed segment I obtained,
from p, by aiming at the singularity of Σ and going straight, with 2π angle between its
extremities. Let θ ∈ S1, and consider the subset Mθ ⊂ Σ of points reached by a geodesic
starting from a point of I in the direction θ. If Mθ ⊊ Σ, then its boundary must be made of
saddle connections. Indeed, first, every geodesic starting from a point x of I either reaches
a singularity or returns to I. This is because, otherwise, the geodesic transportation
of a small geodesic segment containing x would be of infinite area, contradicting the
compactness of Σ. By this remark, if a point y in the boundary of Mθ does not belong to
a saddle connection, it is reached by a geodesic starting from a point in I that is not a
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Figure 14: L decomposition of a surface in H(2). Blue segments represent slits.
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Figure 15: Z decomposition of a surface in H(1, 1). Blue segment represent slits.
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Figure 16: The zippered rectangle construction in the case of a surface in H(2). The
singularity is in red. Numbers indicate the gluing procedure.

singularity. We could thus take a small neighborhood of y in I which would imply that y
belongs to the interior of Mθ, a contradiction. Hence, by choosing θ not in the at most
countable subset of directions of all possible saddle connections, we can suppose Mθ = Σ.
It can be shown, using the geometric properties of (Σ,ω), that it is obtained by four
zippered rectangles as in Figure 16. By pasting and gluing, one obtains an octagon as in
Figure 17. Finally, it suffices again to glue and paste parts of this octagon to obtain the L
shape decomposition, see Figure 18.
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Figure 17: Masur-Yoccoz octagon decomposition of a surface in H(2) obtained by gluing
and pasting parts of the zippered rectangles decomposition.
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Figure 18: Gluing and pasting a Masur-Yoccoz octagon to obtain a L decomposition.
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Chapter 3

PL isometric embeddings: previous
works

Résumé en français. Nous rappelons dans ce chapitre l’état de l’art sur les plongements
isométriques PL de surfaces polyédrales. Nous commençons par énoncer le théorème
d’Alexandrov sur la réalisation des métriques plates à singularités convexes (d’angle
au plus 2π) de la sphère, et donnons une application de ce théorème à l’existence de
triangulation universelle en genre 0. Nous rappelons ensuite le théorème de Burago et
Zalgaller, analogue PL du théorème de Nash-Kuiper, qui portent sur les plongements
isométriques PL de surfaces polyédrales. Nous donnons enfin deux constructions que nous
utiliserons au chapitre 5 pour construire une triangulation universelle pour les tores plats.
La première est dû à Zalgaller et permet de réaliser tous les tores plats suffisamment
longs. La deuxième, qui présente une histoire complexe, a été rédécouverte récemment par
Arnoux, Lelièvre et Màlaga et porte le nom de diplotore.
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In this chapter we recall previous results about isometric embeddings of surfaces. First,
we state Alexandrov’s theorem about the existence of realizations of polyhedral metric of
conical angles less than 2π on the sphere and give some application to the existence of a
universal triangulation in genus 0 with a number of fixed conical angles. We then present
the theorem of Burago and Zalgaller about PL isometric embeddings of surfaces. Finally,
we end the section with three elementary constructions for flat tori. The first one can
realize any long flat torus, long meaning that the ratio of its area by the square of the
length of its systole is large, and is used in our construction of flat surfaces of genus 2.
The second enables to realize any flat torus but is harder to generalize in higher genus.

3.1 Alexandrov’s theorem
We refer to [Ale06] for this section.

Let S denote the unit sphere. A polyhedral metric ρ on S admits a polygonal scheme,
i.e. a family of polygons whose gluing is isometric to ρ. Indeed, pick some vertex A1 and
draw the geodesic lines from A1 to the other vertices A2, ..., An - such geodesics can be
shown to exist. Cutting the sphere along these shortest arcs, we obtain a polygon Q with
2(n− 1) sides, which can be glued to obtain the metric ρ.

It appears that every convex polyhedral metric on the sphere, i.e. a metric with conical
angles less than 2π, can be realized in ambient space as a convex polyhedron in 3-space.
The proof’s plan developed by Alexandrov is the following.

A polygonal scheme of the sphere as the one given in the previous paragraph can be
triangulated. By this way, fixing the underlying combinatorial triangulation, the geometry
of the scheme is characterized by the lengths of its edges. Denote by n the common
number of vertices of the triangulations, which is equal to the number of singularities
of the metric. By Euler’s formula, it is easily seen that the number of edges is 3n − 6.
Hence the space of polygonal scheme realizing a metric with n given singularities is 3n− 6
dimensional. On the other hand, a convex polyhedron is entirely determined by the
coordinates of its vertices as it is the convex hull of its vertices. Considering polyhedron
up to rigid motions, we can fix 6 coordinates of its vertices (for instance, we may fix one
vertices entirely top be the origin, two coordinates of an other vertices so that it lies in
the {y = z = 0, x > 0} half-line, and the coordinate of a last one so that it belongs to the
{z = 0, y > 0} half-plane). This gives 3n− 6 variables characterizing a convex polyhedron,
with n vertices. Hence the space of polyhedra with n vertices and the space of polygonal
schemes of polyhedral metrics with n singularities have the same dimension.

A convex polyhedron admits a natural triangulation. Consider such a triangulation.
By a deformation we mean a small change of the edge length of this triangulation. It
appears that there exists a neighborhood of this triangulation that can be realized by
convex polyhedra. Then Alexandrov shows that every metric ρ1 can be connected to a
realizable metric ρ0 through a continuous family of metric ρt. He next proves then that
every metric close to a realizable metric is also realizable. It followss that ρ1 is realizable
by connectedness.

However, it may happen that the metric is realized by a double covered polygon. Igor
Pak, in [Pak06], found a method to embed doubly covered polygons. Let P be a doubly
covered polygon obtained by gluing two copies of a polygon P . For each vertex v of P
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v

xv

XP

ℓ

Figure 19: The polygons P and XP , and the procedure to obtain a polygonal scheme of
P which allows to embed P into R3.

Figure 20: Isometric embedding with 5n vertices of a doubly covered n-gon as described
by Igor Pak in [Pak06] (here n = 5).

incident to two edges e and e′, denote xv a point at distance ε from e and e′, and XP

the polygon whose vertices are the xv. Refer to Figure 19. Then, for every vertex v of
P , cut P with a line ℓ ⊥ (v, xv) at distance |vxv| from xv. Connect the two points of
intersection of ℓ and XP to v, and drop perpendiculars to the sides of P . We obtain
finally a decomposition of P into a large polygonal region in the interior of P , rectangles
(one per side), and triangles around vertices (three per vertex). It remains to bend the
rectangles at right angle with respect to XP , and to bend the triangles to form a pyramid
whose apex v project to xv. Reflecting the obtained surface through the horizontal plane
containing the vertices v gives the desired embedding. See Figure 20 for an example.

We can now state a complete Alexandrov’s theorem:

Theorem (Alexandrov). Let ρ be a metric on the sphere S with n conical angles less than
2π. Then there exists a convex polyhedron P ⊂ R3 with n vertices, possibly degenerated
into a doubly covered polygon, and a PL isometry (S, ρ) → P.

This theorem can be used in turn to build a universal triangulation for polyhedral
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metrics with a fixed number of singularities. Indeed, the number of triangulations on
the sphere with n vertices is finite. We then consider a common refinement of all such
triangulations to obtain a fixed triangulation that realizes every polyhedral metric of
positive ”curvature” with n singularities.

3.2 Theorem of Burago and Zalgaller
In this section we state the theorem of Burago and Zalgaller about PL isometric embeddings
of polyhedral surfaces and sketch its proof, following the paper [BZ95].

We begin by the theorem in itself, and then move to the proof.
Here, short means contractant and the approximation part has to be understood in

the space of continuous mappings for the uniform convergence norm.

Theorem 1 (Burago and Zalgaller). Let Σ be a polyhedral surface. Let f : Σ → R3 be
a short and C2 embedding. Then for all ε > 0, there exists a PL isometric embedding
g : Σ → R3 such that sup

x∈Σ
|f(x) − g(x)| < ε.

In other words, every short and C2 embedding in R3 of a polyhedral surface can be
approximated by a PL isometric embedding.

Embedding a triangle above a smaller one. We first describe the main building
block of the construction of Burago and Zalgaller. It gives a pleating of an acute triangle -
acute meaning that the triangles admits only acute angles - in the half prism delimited by
a smaller acute triangle. Moreover, the construction extends to the case where the 3 sides
of the prism are slightly tilted. More formally, we have the following lemma:

Lemma 2. Let T = A1A2A3 and t = a1a2a3 be Euclidean triangles such that:

(i) T and t are acute,

(ii) |aiaj| < |AiAj| for 1 ≤ i, j ≤ 3; i ̸= j,

(iii) the distance of the circumcenter ω of t to each side aiaj is smaller than the distance
of the circumcenter Ω of T to the corresponding side AiAj.

Assume that t lies in the horizontal plane xy of R3. Denote by mij the point vertically
above aiaj at equal distance from ai and aj. Then T has a PL isometric embedding in the
prism above t with the boundary condition that each side AiAj is sent to the broken line
aimijaj. Moreover, each face of the prism can be slightly rotated so that the construction
remains possible.

Proof. The triangles T and t being acute, they contain their circumcenters Ω and ω in
their interior. We let ω′ be the point vertically above ω such that |a1ω

′| = |A1Ω| - see
Figure 22. In other words: ω′ = ω+ z′ez. Note that ω′ is well defined since by assumption
the circumradius |A1Ω| of T is larger than the circumradius |a1ω| of t.

We first subdivide T into three subtriangles ΩAiAj. The goal is to fold each ΩAiAj
above ωaiaj with the boundary condition for AiAj as in the lemma, and so that the
boundary edges ΩAi, ΩAj are sent respectively to the segments ω′ai and ω′aj . To this end,
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Figure 21: The prism above t.
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Figure 22: The subtriangle ΩA1A2 is folded above t.
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Figure 23: a - the reflection plane Π1. b - after reflection in Π1, and the plane Π2. c -
reflection in Π2. d - after an even number of reflections the point Ω is sent to ω′.

we first fold ΩA1A2 along its altitude from Ω and place the resulting two-winged shape
above t, as in Figure 22, so that the side A1A2 is folded onto the broken line a1m12a2.
We next consider a plane Π1 in the pencil of planes through a1a2 to reflect the part of
the two-winged shape lying to the right of that plane. See Figure 23. Another plane Π2
in the same pencil of planes is then chosen to reflect part of the already reflected part.
Choosing Π1 and Π2 appropriately, it is not hard to see that after an even number of
reflections the point Ω in ΩA1A2 can be sent to ω′, cf Figure 23 d. We finally apply the
same construction to the two other subtriangles ΩA2A3 and ΩA3A1 and paste them to
form a folding of T above t as desired.

Note 3. As previously stated, this pleating of T admits some flexibility. In particular, the
boundary conditions can be modified so that each boundary wedge aimijaj is tilted around
the axis aiaj. This modification is needed in order to paste the constructions above two
adjacent triangles that are non coplanar as illustrated in Figure 24.

Embedding of a closed polyhedral surface Σ. Denote by f0 : Σ → R3 the original
short C2 embedding as in Theorem 1. We first modify f0 near small neighborhoods of the
singularities of Σ to obtain a C2 short embedding f1 such that every singularity admits a
neighborhood that is sent to a small Euclidean disk in the tangent plane in order to apply
some constructions. Without entering into the details, the modifications are such that f1
is conformal near singularities of conical angle less than 2π, and so that f1 is isometric on
the radial segments and uniformly contracting on the circles centered at the singularity
with conical angle greater than 2π. See [BZ95]. We then surround the singularities of Σ
by small disjoint polygonal neighborhoods which depend on f1. Denote U the union of
such neighborhoods. The strategy for the proof of Theorem 1 is the following:

(a) Compute an acute triangulation T of Σ \ U , where each triangle is acute, and such
that there exist a uniform lower and upper bound on the angles of all the triangles.
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Figure 24: Pasting two foldings of large triangles sharing an edge above small triangles
that are non coplanar.

(b) Compute an approximation f2 of f1 that is almost conformal outside a small
neighborhood U>2π of the singularities with conical angle greater than 2π and stays
short and C2 on Σ.

(c) Refine the acute triangulation of Σ \ U uniformly to obtain an acute triangulation
with small triangles, and propagate it to the entire Σ. The meaning of small depends
on the geometric properties of f2 and the flexibility in Note 3.

(d) Replace f2, outside U>2π, by its PL approximation F mapping linearly each triangle
T = A1A2A3 of T to the triangle F (T ) := f(A1)f(A2)f(A3) in R3.

(e) Apply the construction in the previous paragraph to every pair (T, F (T )), using the
tilted version in Note 3 in order to paste the constructions of adjacent triangles.

(f) Fill the gaps near singularities of conical angle greater than 2π with specific con-
struction as described in [BZ95].

Computing an acute triangulation as required in step (a) is a non trivial task. If Σ
is obtained from a gluing of Euclidean triangles, it was shown how to compute an acute
refinement of reasonable size [BZ60, Zam13]. Step (b) is the most challenging and relies
on the Nash-Kuiper theorem [Nas54, Kui55]. The idea is to apply this theorem in order
to approximate f1 by an almost isometric map with respect to a metric homothetic to the
metric on Σ but slightly smaller. This provides the map f2 that is at the same time short
and almost conformal. This almost conformality combined with the uniform subdivision
in step (c) implies that any triangle T of T is sent by the PL approximation F of step (d)
to an almost similar triangle F (T ). Since f2 and its PL approximation are short, this
in turn implies that the pair (T, F (T )) satisfies the three conditions of Lemma 2. The
previous arguments work outside U . Near a vertex A of conical angles θ less than 2π, the
polygonal neighborhood Q(A) is chosen to be a regular hexagon centered at the singularity
composed of six isosceles with apical angle θ/6, further refined into isosceles triangles
according to the uniform refinement of Σ \U , see Figure 25. The map f1 is chosen so that
first the vertices of each isosceles triangle T composing Q(A) are sent to vertices of acute
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A

Figure 25: The hexagonal neighborhood of a singularity A of conical angle less than 2π.
Here, the triangulation has been refined on the edges and has been propagated.

triangles t in the tangent plane of f1(Σ) at f1(A). Moreover, it is also chosen such that
the coefficient of contraction is so large that the conditions of Lemma 2 are fulfilled. This
ensures the possibility to apply the Lemma 2 to every triangles outside U>2π. Moreover,
the fact that the triangles in T are small together with the smoothness of f2 ensure that
F maps adjacent triangles to almost coplanar triangles. We can thus apply the building
block of Lemma 2 and its tilted version as in Note 3 to perform step (e). This eventually
leads to a PL isometric embedding of S \ U>2π. It remains to embed appropriately U>2π
as required by step (f) to complete the construction.

This can be done the following way. Recall that, by construction, at a singularity B
of conical angle θ greater than 2π, f1 sends a circular disk V0 of B into a plane sector
in the tangent plane at f0(B). We also know that the map is isometric on the radial
segments and uniformly contracting on the circles centered at B. We split the boundary
V = ∂V0 into N0 equal arcs, each arc being the base of an isosceles ”triangle” in the
exterior of V . As a result we obtain a ”cogged” polygon Q(B) - see Figure 26. It is
possible to propagate the refinement of the triangulation T of Σ \U so that the ”cogs” of
the polygon Q(B) become smaller and more numerous, see Figure 27. Given a refinement
of the complementary of U , this splits the boundary of the circular neighborhood V0 into
N ≥ N0 arcs of equal length. Denote F1, ..., FN the splitting points, and Ei the midpoint
if the chord FiFi+1. Then the polygon V (B) = F1...FN can be isometrically and piecewise
linearly embedded above the tangent plane PB at f1(B) as a radially creased surface
as shown in Figure 28. If the refined triangulation T is sufficiently thin, every broken
line FiEiFi+1 lie in a plane almost perpendicular to PB, and it is possible to apply the
arguments of Note 3 to make coincide the broken line FiEiFi+1 with the side FiFi+1 of an
adjacent triangle T of the refined triangulation.
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Q(B)

Figure 26: A typical cogged polygon Q(B) surrounding a singularity of conical angle
greater than 2π.

Figure 27: The refinement propagated to a cog.
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Figure 28: The creased embedding of the circular neighborhood V0 of a singularity B of
conical angle greater than 2π. If the triangulation is sufficiently fine, each adjacent triangle
FiFi+1Ai to V0 can be embedded thanks to Lemma 2 so that the boundary condition
matches with the broken line FiEiFi+1.

3.3 Zalgaller’s long flat tori
Any flat torus can be obtained by identifying abstractly the top and bottom boundaries
of a right circular cylinder. Non rectangular tori are obtained by shifting circularly
the top boundary before identification. We can moreover cover all the torus moduli by
varying the ratio between the height and the length of its boundaries. A torus is said
long when this ratio is large. In [Zal00], Zalgaller proposes an origami style folding of
long flat tori, much simpler than the general construction of Burago and Zalgaller [BZ95].
Instead of a circular cylinder, Zalgaller starts with a polyhedral cylinder in R3, namely a
right prism with equilateral triangular basis, that he bends at several places to make the
boundaries coincide, allowing their geometric identification. A twist is also applied before
the bending so as to simulate a circular shift of the top boundary. To do so, and to rotate
the cross-section of the prism without rotating its ”material”, Zalgaller introduces what
he calls a gasket.

How to bend a triangular prism. Consider a right prism P with triangular basis
and an orthogonal cross section CC ′D. A bending at angle φ with cutting angle λ
along the rib CC ′ is obtained by (see Figure 29)

(a) cutting two isosceles triangles ACB and AC ′B out of P, where A,B lie on the
generatrix of the prism through D, and the angle at C (and C ′) is 2λ,

(b) bending the cut prism at angle 0 ≤ φ < π,

(c) folding ACB and AC ′B appropriately to fit them back on the bended prism.

Let A1, B1 be the respective positions of points A,B after bending and let ∠A1CB1 =
2µ. In order for the construction not to overlap, one should have µ > 0, hence λ should
satisfy λ0(φ) < λ < π

2 where λ0(φ) is the angle for which, after bending, the triangles
A1CC

′ and B1CC” coincide. Looking at the right angled triangles ADC and ADV , one
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Figure 29: Bending of a prism.
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Figure 30: Left, a gasket with turn α and height h. Right, the gasket is unfolded in
the plane. Cutting and pasting a small triangular piece shows that the gasket has the
geometry of a right prism.

easily computes

λ0(φ) = arctan
(√

3
2 tan φ2

)
. (3.1)

We postpone the study of prism bending to Section 5.1. In particular, we will show
that it is possible to bend a right prism introducing only 12 triangles in step (c).

Rotating a cross section with a gasket. The ribs of the prism P may have only three
possible directions. This prevents to bend P in an arbitrary direction. To circumvent
this rigidity, Zalgaller introduces a simple construction that he calls a gasket. Consider
an equilateral triangle ABC in the horizontal plane and a vertical translate A′B′C ′ at
height h. Rotate A′B′C ′ by an angle α about the central vertical axis. The gasket with
turn α and height h is the polyhedral cylinder formed by the six congruent triangles
ABA′, A′BB′, B′BC,B′CC ′, C ′CA,AA′C ′. See Figure 30. This gasket is embedded for
every α ∈ (−π/3, π) independently of h > 0.

By pasting two prisms at the boundaries of a gasket, we obtain a polyhedral cylinder
with triangular boundaries, where the two boundaries are turned at the angle α with
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Figure 31: Joining a gasket with two prisms to rotate their ribs. Right, unfiolding of the
construction showing the line of cut (in blue) and a generatrix (in red) of the polyhedral
cylinder.

respect to each other, cf Figure 31.

Note. The top and bottom prisms in Figure 31 have the same central axis. This allows
to rotate the rib of a prism at an angle α ∈ (−π/3, π) before applying a bending.

Note 4. By joining k gasket in a row, we can rotate the rib of a prism at an angle
α ∈ (−kπ/3, kπ).

We will study in details gasket in Section 5.1, where we quantify how much ”material”
is needed to realize a gasket of height h with turn α.

Twisting a prism. Replacing a portion of a prism by a gasket with turn α allows to
turn the top boundary of the prism with respect to the bottom one but does not twist
the prism: the gasket makes generatrices going through a vertex on the bottom triangle
not go through the corresponding vertex in the top. In order to twist the prism so that
the top endpoint of this geodesic indeed turns with the boundary, Zalgaller introduces
yet an other construction that he calls a helical twist. This construction takes advantage
of the holonomy of parallel transport on the sphere: consider a unit sphere of center O
with a spherical triangle PQR (see Figure 32). If one parallel transports an object from
P to P following the sides of the triangle PQR, then the object is rotated by a certain
angle around the axis OP that is equal to the signed area of the spherical triangle PQR.
In order to twist a prism with axis directed by −→

OP by an angle θ we may thus bend the
prism successively in the directions −→

OQ,
−→
OR and −→

OP . Each bending at angle φ indeed
corresponds to a transport along a spherical geodesic of length φ. Each portion of prism
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Figure 32: The green tangent vector is transported along the spherical triangle PQR. The
angle θ is equal to the area of PQR, while the angle θ0 is given by L’Huillier’s formula.

between two bends should include two gaskets to orient its rib properly. Indeed, by Note 4,
two gaskets allow to turn by an angle in (−2π/3, 2π), which cover all possible orientations.

A helical twist of angle θ consists of a sequence of gaskets and bends according to
the pattern (g2b)5g2 = (g2b)3(g2b)2g2, where b, g stands respectively for bends and gaskets.
The prefix (g2b)3 in the pattern is used to simulate the parallel transport as described
above, assuming that the central axis of the initial cross section is already aligned with−→
OP . The next factor (g2b)2 allows to return on the central axis of the initial cross section.
Since −→

OP is aligned with this central axis, the changes of direction due to the factor (g2b)2

happen in the same plane. The resulting holonomy is thus trivial, which ensures that the
first and last cross sections of this portion are parallel. Finally, the last two gaskets allows
to turn the cross section by any angle in (−2π/3, 2π] - see Figure 33

We refer to Section 5.1 to see a possible implementation and our choice for P,Q,R
leading to an effective construction of the helical twist. Moreover, we also quantify how
much ”length” is needed to realize a helical twist.

Putting the pieces together. Consider a flat torus with modulus τ = τ1 + iτi ∈{
z : |z| ≥ 1, |ℜz| ≤ 1

2

}
. It can be obtained from a cylinder of height τi and boundary

length 1, identifying the boundaries after a circular shift at angle 2πτ1. Zalgaller constructs
his PL isometric embeddings of long tori, assuming that τi is large, as follows. He first
replaces the circular cylinder by an isometric equilateral triangular prism that is bent 6
times at angle π/3 to form a hexagonal tube. If the torus is rectangular, that is if τ1 = 0,
then the initial and final cross-sections coincide geometrically, and their identification
provides the desired embedding. Otherwise, Zalgaller replaces one side of the hexagon
by a helical twist of angle 2πτ1 in order to glue the boundaries of the prism with the
correct angular shift. We use a slightly different construction that allows to get shorter
tori. Starting from a helical twist of angle θ, we add 4 bends at angle π/2 and 3 portions
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Figure 33: The cross section (in blue) after the last bending of a helical twist is rotated
by an angle θ about the central axis with respect to the initial cross section (in red). The
last two gaskets allow to turn the last cross section (in red) to be a translate of the initial
one.

Figure 34: Our construction decomposed into bends (in light blue), gaskets (in light green)
and triangular prisms (in pink).

of right prisms as illustrated in Figure 34 to form a torus with rectangle shape.

3.4 Diplotori
The previous construction allows to realize a flat torus only if it is long enough. We
describe in this section a construction that can be used to realize any flat torus according
to the parameters one chooses.

It was only recently that Arnoux, Lelièvre and Málaga [ALM21, not yet published],
and Tsuboi [Tsu20], independently (re-)discovered very simple geometric realizations of
flat tori. Arnoux, Lelièvre and Málaga are able to prove that their construction, called
diplotorus, allows to realize all flat tori. However, one cannot cover all rectangular flat
tori using a fixed combinatorics.

The diplotorus Da,h
n,d with parameter n, d, a, h is defined as follows. Let Ak =

(
ei

2kπ
n , 0

)
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Figure 35: View of the diplotorus D3.5,2
5,2 (a) with its internal (b) and external (c) ploids.

(d), an other view of D3.5,2
5,2 with a transparent external ploid.

be the vertices of the regular n-gon in the horizontal coordinate plane. Let Bk =(
ei

π
n

(a+1+2k), h
)

be the vertices of the vertical translate by h of this n-gon, turned by an
angle (a+ 1)π

n
. Then Da,h

n,d = Pint
⋃Pext is the union of two twisted prisms, called ploids,

where Pint is the union of triangles {AkAk+1Bk}0≤k<n and {BkAk+1Bk+1}0≤k<n, and Pext

is the union of triangles {AkAk+1Bk−d}0≤k<n and {Bk−dAk+1Bk+1−d}0≤k<n. Of course, all
indices should be considered modulo n. Note that a ploid with n = 3 is nothing but a
gasket. Figure 35 shows the diplotorus D3.5,2

5,2 .
We postpone to Section 5.2 more involved considerations about diplotori. In particular,

the realization theorem of Arnoux, Lelièvre and Málaga which we use later in our
construction of a universal triangulation for flat tori.
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Chapter 4

Implementation of the method of
Burago and Zalgaller in the case of
flat tori

Résumé en français. La méthode de Burago et Zalgaller, bien que générique, n’est pas
totalement constructive car repose sur le procédé de Nash-Kuiper à l’étape (b). Cependant,
dans le cas des tores plats, il est possible d’adapter la méthode pour obtenir un algorithme
effectif, ce que nous faisons dans ce chapitre.
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Figure 36: The equilateral lattice (here n = 4) is deformed to fit the lattice of T.

In this chapter we present our implementation of the method of Burago and Zalgaller
in the case of flat tori. Let T = Tτ a flat torus of modulus τ ∈

{
z : |z| ≥ 1, |ℜz| ≤ 1

2

}
. As

a flat torus has no singularity by Gauss-Bonnet theorem, we can set the neighborhood of
the singularities U to be empty in the last paragraph of Section 3.2. We recall that we
have to compute an acute triangulation of T, and then we have to choose a short and
smooth embedding we will have to modify in order to make it quasi-conformal. These
steps become relatively simple in the case of flat tori.

4.1 Simple acute triangulation of a flat torus
Itoha and Yuan [iIY09] have shown that every flat torus can be triangulated into at most
16 acute triangles. However, since we need a fine triangulation as in step (c) with a good
control on the acuteness, we use the following triangulation, which is conceptually simpler.
We consider the equilateral triangular lattice generated by ei π

3
n

and 1
n

for some positive
integer n. This lattice comes with a regular triangulation Te by equilateral triangles. Let
pa,b = a e

iπ/3

n
+ b

n
with a, b ∈ Z, be a point in this lattice that is closest to τ , the modulus

of T. In particular, |τ − pa,b| ≤ 1
n

√
3 . We deform Te by a linear transformation ℓ defined

by 1 7→ 1 and pa,b 7→ τ . By the previous inequality and for n large enough, ℓ is close to
the identity. The triangles in ℓ(Te) are thus close to equilateral. Now, the lattice Z + Zτ
leaves ℓ(Te) invariant, so that ℓ(Te)/(Z+Zτ) is a well defined triangulation of T by almost
equilateral triangles. See Figure 36.

4.2 Conformal embedding of a flat torus
In the case of flat tori, we can directly provide short and conformal embeddings.

The case of rectangular flat tori. Let us identify R3 with C × R. First observe that
the standard embedding of the square flat torus T1 as a torus of revolution,

f :
{

T1 → R3

(u, v) 7→ ((R + r cos(2πu))ei2πv, r sin(2πu))

is never conformal as the ratio of the lengths of the partial derivative is non-constant.
The partial derivatives are nonetheless orthogonal and when the torus is rectangular, i.e.,
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Figure 37: Left, the fundamental domain of the rectangular torus T2i is chosen to be
aligned with an almost equilateral tiling as in Section 4.1. Right, PL approximation of
the conformal embedding f2i.

when τ = iτi is pure imaginary, there are conformal maps of the form

fiτi
:
{

Tiτi
→ R3

(u, v) 7→ f(α(u), v/τi)

for some 1-periodic function α. Indeed, when α satisfies the differential equation τiα
′ =

cos(2πα) + R
r
, one easily checks that the partial derivatives of fiτi

with respect to u and v
have the same norm (and are orthogonal). This differential equation solves to

α(u) = 1
π

arctan
√R + r

R − r
tan

(√
R2 − r2

τir
πu

) with R

r
=
√
τ 2
i k

2 + 1

for some integer k. In practice we chose k = r = 1, leading to the conformal map:

fiτi
(u, v) =

((√
τ 2
i + 1 + cos(2πα(u))

)
ei2πv/τi , sin(2πα(u))

)

with α(u) = 1
π

arctan
(√√

τ2
i +1+1√
τ2

i +1−1
tan(πu)

)
. It remains to compose fiτi

with a contracting

homothety to get a short conformal embedding of Tiτi
. See Figure 37 for an example.

The general case. In order to embed non rectangular tori conformally, we rely on the
Hopf tori developed by Pinkal [Pin85]. These are based on the Hopf fibration

p :
{

S3 → S2

(x, y, z, t) 7→ (2xz + 2yt, 2xt− 2yz, x2 + y2 − z2 − t2) ,

which is a circle bundle of the 3-sphere S3 onto the 2-sphere S2. Pinkall proves that if γ is
a simple closed curve on S2, then p−1(γ) endowed with the metric inherited from R4 is a
flat torus isometric to Tτ , with τ = A+iL

4π , where L is the length of γ and A is the oriented
area delimited by γ on S2, choosing the side of γ so that A ∈ [−2π, 2π). Since this torus
lies in S3 ⊂ R4, it remains to apply a stereographic projection, say from the South pole
(0, 0, 0,−1), assuming it does not lie on the torus, to obtain a conformal embedding of Tτ
in R3. In coordinates: (x, y, z, t) 7→ (x,y,z)

t+1 .
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Banchoff [Ban88] revisited Pinkall’s approach to give explicit parametrizations of the
Hopf-Pinkall tori. On S2, Banchoff considers a curve of the form γτ (θ) = (sinϕ(θ)eiθ, cos(ϕ(θ))
given in spherical coordinates, where the polar angle 0 < ϕ < π is a smooth function of
the azimuthal angle 0 ≤ θ ≤ 2π. He next defines L(θ) =

∫ θ
0 |γ′

τ (t)|dt to be the length of
the curve portion γτ ([0, θ]) and A(θ) =

∫ θ
0 (1 − cosϕ(t))dt the area on S2 swept by the arc

of meridian linking the North pole to the point on γτ up to θ. The conformal embedding
fτ : Tτ → R3 is then given by fτ = f ◦ g−1 with

f :
{

(R/2πZ)2 → R3

(θ, ψ) 7→
(
sin ϕ(θ

2 e
i(θ+ψ), cosψ cos ϕ(θ)

2

)
/
(
1 + sinψ cos ϕ(θ)

2

) , and

g :
{

(R/2πZ)2 → T−1/τ ∼ Tτ
(θ, ψ) 7→

(
L(θ)

2 , A(θ)
2 + ψ

) .

In other words,

fτ (u, v) =
(

sin ϕ(θ)
2 ei(θ+u−A(θ)/2), cos(u− A(θ)/2) cos ϕ(θ)

2

)
/

(
1 + sin(u− A(θ)/2) cos ϕ(θ)

2

)
,

where θ satisfies L(θ) = 2v and (u, v) ∈ R2/(Z2πi+ Z2πi/τ)
We chose ϕ of the form ϕ(θ) = a+b sin(nθ) for a < b, 0 ≤ b < π−a and n ∈ N. in order

to represent the modulus τ = τ1 + iτi, the parameters a, b, n should satisfy A(2π) = 4πτ1
and L(2π) = 4πτi or equivalently:

J0(b) cos a = 1 − 2τ1 and
∫ 2π

0

√
n2b2 cos2(nt) + sin2(a+ b sin(nt))dt = 4πτi,

where J0(b) = 1
π

∫ π
0 cos(b sin t)dt denotes the 0-th Bessel function of the first kind. The

condition on the total area implies 0 ≤ τ1 ≤ 1. Nevertheless, it is still possible to obtain a
conformal embedding in the case of τ1 < 0 by first reflecting the torus along one of its
boundary edge and applying a reflexion of the image torus in R3. We can thus cover the
whole moduli space.

4.3 Final construction
We now have all the pieces to produce PL isometric embeddings of flat tori. Given a
modulus τ , we first compute a quasi-equilateral triangulation of Tτ as in Section 4.1. We
then compute a PL approximation Fτ of the conformal map fτ defined in Section 4.2 and
finally apply the construction in the first paragraph of Section 3.2 to every pair of triangle
(T, Fτ (T )). Figures 38 and 39 show some results.

4.4 Limitations and discussion
The construction of Burago and Zalgaller, though generic, gives rise to triangulations
with a huge number of triangles, moreover distinct for every initial short and smooth
embedding f0. Nevertheless, by the flexibility of the construction mentioned in the first
paragraph of Section 3.2, in a small neighborhood of a flat torus T in the moduli space
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Figure 38: Left, PL isometric embedding of the square flat torus with 170,040 triangles.
Middle, the mesh with black edges shows the PL approximation of the initial conformal
embedding. Each of its triangle is replaced with a construction (in blue) as in Section 3.2
oriented toward the interior of the initial embedding. Right, the construction is oriented
towards the outside, giving another isometric immersion of the square flat torus - this last
model present self-intersections; a finer triangulation should be used to avoid them.

Figure 39: Isometric immersion of Tτ with, form left to right τ = eiπ/3, (1+ i)/2, (1+3i)/2.
The left immersion is a hexagonal flat torus. While the subdivisions of the left and right
tori already have more than 7 millions triangles, they present self-intersections. Finer
triangulations should be used to get embeddings.
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M of flat tori, it is possible to use the same PL approximation of a short and conformal
embedding (for example the one of T) as a common frame for all the flat torus in the
neighborhood in order to apply Lemma 2. In other words, locally in M , we can fix a
triangulation that realizes geometrically and linearly, i.e. without the need of subdividing
it, any flat torus in a small neighborhood. This suffices to show the existence of a universal
triangulation for any compact subset of M . M being not compact, this is not enough for
our purpose. However, as M admits only one point at infinity, it is enough to realize a
neighborhood of this point at infinity with a fixed triangulation to conclude about the
existence of a universal triangulation for all of M . The next section is devoted to the
construction of such a triangulation. While the flat tori near infinity, which correspond to
long flat tori - i.e. flat tori Tτ with a large |τ | where τ ∈

{
z : |z| ≥ 1, |ℜz| ≤ 1

2

}
, are dealt

with Zalgaller’s construction, we go further and use three families of diplotori to cover the
remaining compact subset that remains to realize.
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Chapter 5

Universal triangulation for flat tori

Résumé en français. L’algorithme du chapitre 4 permet de réaliser tous les tores
plats de manière individuelle. Nous nous intéressons, dans ce chapitre, à l’aspect uniforme
de telles réalisations. Plus précisément, nous introduisons la notion de triangulation
universelle pour une famille F de surfaces polyédrales de genre g. Une triangulation
T de la surface topologique orientable fermée Sg est dite universelle pour F si, pour
tout élément Σ ∈ F , T admet une réalisation géométrique dans R3 isométrique à Σ, la
réalisation étant affine en restriction à chaque triangle de T . Le chapitre est dévolu à la
démonstration du Théorème 5, qui démontre de manière constructive l’existence d’une
triangulation universelle pour la famille M des tores plats comportant 2434 triangles. La
démonstration comporte trois parties. Tout d’abord, par une étude fine des tores longs
de Zalgaller, nous démontrons l’existence d’une triangulation universelle pour la partie
M long de M formée des modules de partie imaginaire supérieure ou égale à 33. Nous
exhibons ensuite trois familles de diplotores qui suffisent à réaliser le complémentaire
M short de M long dans M , et en déduisons une triangulation universelle pour M . Enfin,
nous procédons à la superposition des deux triangulations précédentes pour obtenir la
triangulation universelle de M désirée.
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In this chapter we revisit and take a deeper look at Zalgaller’s long flat tori, and at
dipotori described in the previous chapter in order to build a universal triangulation for
flat tori. While Zalgaller’s construction is used to realize long flat tori, that is the subset

Mlong :=
{

[τ ] : |τ | ≥ 1, |ℜτ | ≤ 1
2 ,ℑτ ≥ 33

}
⊂ M

we use three families of diplotori to cover the complementary

Mshort = M \ Mlong ⊂ M .

It is then enough to overlay the two corresponding triangulations to obtain a universal
triangulation for M . The following sections will permit to state the following statement:

Theorem 5. There exists an abstract triangulation T of the torus with 2434 triangles
that admits for each flat torus an embedding in R3 which is linear on each triangle of T ,
and which is isometric to this flat torus. Moreover, every flat torus has an isometric PL
embedding in R3 with at most 270 triangles.

5.1 A deeper look at Zalgaller’s tori: universal trian-
gulation for long flat tori

In this section we show the following proposition.

Proposition 6. There exists an abstract triangulation with 270 triangles, which admits
linear embeddings isometric to every flat torus with modulus in Mlong.

The proof amounts to add fine and precise quantitative bounds to the various step in
Zalgaller’s construction of Section 3.3. The main difficulty remains to identify what ”long”
means in mathematical terms, i.e. to find a good candidate for Mlong that was not known
a priori.

Bending a right prism introducing 12 triangles. We will show that it is always
possible to bend a right prism by introducing 12 triangles to the initial triangulation.
More precisely, we show the following Lemma.

Lemma 7. Let P be an infinite right prism. For every φ ∈ (0, π) and for every λ ∈
(λ0(φ), π/2), there is an embedded bending of P at angle φ with cutting angle λ introducing
12 triangles.

Proof. Recall the first paragraph of Section 3.3. We only have to check that ACB and
AC ′B can be folded appropriately in step (c) introducing only 12 triangles. To do so, we
first fold CAB along its altitude from C to reduce the angle ∠ACB from 2λ to 2µ. The
side AB is mapped onto a broken line A1D̃B1 and the goal is to rotate this broken line so
that it is contained in the ”vertical” plane through A1, B1, V , where V is the middle of
CC ′. See Figures 29 and 40. Denote by Π0 the plane spanned by A1, B1, C. Also denote
by Πθ the plane in the pencil of planes through A1B1, making an angle θ with Π0. Let
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Figure 40: Folding of triangle ACB.

α, β be such that Πα contains D̃ and Πβ contains V . Because the triangles CD̃M1 and
CVM1 - where M1 is the middle of A1B1 - are right angled at D̃ and V , we easily deduce

α = arcsin cosλ
cosµ and β = arcsin cosλ

2 cosµ.

Set δ = α− β. The plane Πδ/2 cuts CD̃ in D1. We first reflect across Πδ/2 the pieces
of triangles A1CD̃ and B1CD̃ lying above Πδ/2. We next reflect across Π0 the part of
the reflected part lying below Π0. As a result, A1D̃B1 is rotated in Πβ as desired. The
resulting folding is composed of 6 triangles as illustrated on Figure 41. Moreover, if
β > δ/2, then the resulting folding of ACB lies inside the ”top” quadrant delimited by Πβ

and Π0. As a consequence, we can fold AC ′B according to the symmetric image across
Πβ of the folding of ACB; the two triangle foldings join along the folding of AB in Πβ

and they fit inside the tetrahedron A1B1CC
′ without creating intersection with the rest

of the bended prism. They comprise 12 triangles in total.
Zalgaller [Zal00] also considers the case β ≤ δ/2 that forces him to use an a priori

unbounded number of triangles for bending a prism. We claim that there is no need for
this second case and that we indeed have β > δ/2 for every φ ∈ (0, π) and for every λ ∈
(λ0(φ), π/2). This inequality is equivalent to F

(
cosλ
cosµ

)
> 0 for F (x) = 3 arcsin x

2 − arcsin x.
We have F (0) = F (1) = 0 and a simple computation shows that the derivative of F
cancels only once on [0, 1] at x =

√
5/8. Since F (

√
5/8) > 0, we infer that F is positive on

(0, 1). We finally remark that µ < λ, implying cosλ
cosµ ∈ (0, 1), which allows us to conclude

the demonstration of Lemma 7.

For further reference, we call a bend a bent prism cut along the orthogonal cross
section through A1 and B1. See Figure 41.

The intrinsic length of a gasket. We quantify how much ”material” is needed to
realize a gasket with unit length basis. More precisely, we have:
Lemma 8. For every α ∈ (−π/3, π), the gasket with turn α and height h is isometric to
a right prism of length h̄ with

h̄2 = h2 + 2
27(sin2 α

2 + sin2(π3 − α

2 )) − 4
81(sin2 α

2 − sin2(π3 − α

2 ))2 − 1
36

< h2 + 1
9 .
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Figure 41: A bend is isometric to a right prism of length 2a tanλ. It comprises 20 triangles.

Proof. By unfolding the gasket in the plane, it is seen to be isometric to a Euclidean
rectangle after identifying its vertical sides, see Figure 30. It is thus isometric to a right
prism of length h̄, where h̄ is the height of the rectangle. Fix the coordinates of A,B,C to
be respectively

(
1

3
√

3 , 0
)
,
(
ei2π/3

3
√

3 , 0
)

and
(
e−i2π/3

3
√

3 , 0
)

in R3 = C × R. Then the coordinates
of A′, B′, C ′ are respectively

(
eiα

3
√

3 , h
)
,
(
ei(α+2π/3)

3
√

3 , h
)

and
(
ei(α−2π/3)

3
√

3 , h
)
. The three sides of

the congruent triangles are given by

|AB| = 1/3, |A′A| =
√

4
27 sin2(α/2) + h2, |BA′| =

√
4
27 sin2(π/3 − α/2) + h2.

From Heron’s formula, we have h̄ = 2
√
p(p−|AB|)(p−|BA′|)(p−|AA′|)

|AB| with p the half-perimeter
of ABA′, and we obtain

h̄2 = h2 + 2
27(sin2 α

2 6 sin2(π3 − α

2 ) − 4
81(sin2 α

2 − sin2(π3 − α

2 ))2 − 1
36 .

Since
sin2 α

2 + sin2(π3 − α

2 ) = 3
4 − sin α2 sin(π3 − α

2 ) < 7/4,

it follows that
h̄2 < h2 + 2

27 × 7
4 − 1

36 < h2 + 1
9 .

Minimal length to realize a helical twist. In practice, to construct a helical twist of
angle θ ∈ (−π, π], we choose an equilateral triangle PQR on the unit sphere, with area θ.
Moreover, we fix P = (1, 0, 0), and we take Q in the plane Oxz with positive z coordinate.
Then, R is the unique point making PQR equilateral and counterclockwise. Denote θ0

the angle between the vectors −→
OP and −→

OQ. L’Huillier’s formula relates the area A of a
geodesic triangle on the unit sphere with its side lengths a, b, c by

tan A
4 =

√√√√tan
(
p

2

)
tan

(
p− a

2

)
tan

(
p− b

2

)
tan

(
p− c

2

)
,
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where p is the half-perimeter. It follows that θ0 satisfies the equation

θ = 4 arctan
√tan(3θ0

4 ) tan3(θ0

4 )
 .

This equation has an explicit solution for |θ| ≤ π:

θ0 = 4 sign(θ) · arctan


√√√√√1 + 2

cos( |θ|
12 − 2π

3 )
cos |θ|

4

 .
Traveling along PQR in trigonometric direction induces a positive rotation angle, while
traveling clockwise induces a negative rotation angle. For |θ| ≤ π, the above formula
implies

θ0 ≤ 4 arctan
√

1 + 2
√

2 cos 7π
12 = 4 arctan

√
2 −

√
3 ≈ 1.911.

From Equation (3.1), we deduce that the corresponding cutting angle satisfies

λ0(θ0) ≤ arctan

√
6 − 3

√
3√

3 − 1
< arctan 49

40 .

For further reference, we set
λ0 := arctan 49

40 .

Denote by s0 the initial cross section of the helical twist, by s1 the cross section at the end
of the fourth bend, and by s2 the initial cross section of the last bend. Refer to Figure 33.

Lemma 9. Given any twist angle θ ∈ (−π, π] and any h > 0, we can construct a helical
twist of angle θ so that its bends have cutting angle λ0, and all its gaskets have height h,
except the two gaskets between sections s1 and s2, which have height h′ imposed by our
construction. This helical twist is isometric to a right prism of length

ℓtwist = 10a tanλ0 + 10h̄+ 2h̄′

and the horizontal distance between the boundaries of the helical twist is bounded by

dtwist = 18(a tanλ0 + h).

Here, h̄ and h̄′ are given by Lemma 8. The height h′ is moreover bounded by

2
√

10(2h+ 3a tan λ0).

Proof. Let a = 1/3 be the length of a rib, i.e. of a side of the triangular cross-sections.
The bending angle of the three first bends is equal to θ0 and we know by the previous
discussion that they can be realized with the cutting angle λ0. We need to prove that
the last two bends can be realized with this cutting angle. Define the extent etwist of
the helical twist as the horizontal distance between the centers of the sections s0 and s2.
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We fix etwist = 16(h+ a tanλ0). Let ci be the center of si, i = 0, 1, 2. The last two bends
have the same bending angle φ, which is the angle between the horizontal direction and
the vector −−→c1c2. We have tanφ = δv/δh, where δv is the distance from c1 to the horizontal
line through c2, and δh is the horizontal distance between c1 and c2. We estimate δv by
adding the contributions of the eight gaskets and the four bends preceding s1. Four of the
eight gaskets are horizontal; it follows that they do not contribute to δv. The fourth bend
turns towards the horizontal axis through c2, it thus contributes negatively to δv. We infer
that δv ≤ 4h+ 6a tanλ0. On the other hand, the horizontal distance d01 between c0 and
c1 is bounded by 8h+ 8a tan λ0. We conclude that tanφ ≤ 4h+6a tanλ0

8h+8a tanλ0
. Hence, for all h,

tanφ < 3/4. Using Equation (3.1) and the classical formula tanφ = 2 tan φ
2 /(1 − tan2 φ

2 ),
we deduce tan λ0(φ) < 1

2
√

3 . It follows that λ0(φ) < λ0 as desired.
The intrinsic length of the helical twist, i.e. the height of the corresponding isometric

cylinder, is the sum of the intrinsic lengths of each constituting bend and gasket. We thus
obtain the formula as in the lemma, where h̄ and h̄′ are given by Lemma 8. We now remark
that the total horizontal extent of the helical twist is bounded by etwist + 2a tanλ0 + 2h
to obtain the bound in the lemma.

We next remark that d01 ≥ 4h + 2a tanλ0, taking into account the four horizontal
gaskets and the two incident horieontal half bends. Hence, δh = etwist−d01 ≤ 12h+a tan λ0
and we finally conclude

h′ =
√
δ2
h + δ2

v ≤
√

(12h+ 14a tanλ0)2 + (4h+ 6a tan λ0)2

≤ 2
√

10(2h+ 3a tanλ0).

Universal triangulation for Mlong. Recall our variation of Zalgaller’s embedding of
flat tori as a prismatic rectangle shape where the upper branch is replaced by a helical
twist as in Section 3.3 and Figure 33. In order to avoid intersection between the horizontal
prism and the horizontal gaskets of the helical twist we choose the two vertical prisms
of length a

3 >
a

2
√

3 . We also choose the length of the horizontal prism to be equal to the
total horizontal extent of the helical twist. We finally take the cutting angle of the four
bends equal to λ′

0 := arctan(9/10) > λ0(π/2). The resulting torus has length

L < ℓtwist + 8a tanλ′
0 + 2a/3 + dtwist,

where ℓtwist and dtwist are given by Lemma 9. In other words,

L < 28a tan λ0 + 8a tan λ′
0 + 2a/3 + 18h+ 10h̄+ 2h̄′.

Using the bound for h′ in Lemma 9 together with the inequality in Lemma 8, and the
fact that tanλ0 = 49/40, and tanλ′

0 = 9/10, we get

L <
253
18 + 18h+ 10

√
h2 + 1

9 + 2
√

40
(

2h+ 49
40

)2
+ 1

9 . (5.1)

By taking h = 0, we thus obtain L < 253
18 + 10

3 + 2
√

492

40 + 1
9 < 33. Note that any longer flat

torus can be obtained by elongating the two vertical prisms. Hence, for h strictly positive
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Figure 42: Rendering of the flat torus of length 18 and circular shift 2π/5 corresponding
to the modulus 0.2 + 18i.

Figure 43: A universal triangulation for long flat tori.

and small enough, say smaller than 0.002, we can realize any flat torus of length at least
33. The bound for L in (5.1) is largely overestimated and our implementation shows that
the same construction, taking h = 1/15, allows to embed tori of length much shorter than
33 even though the right member in (5.1) evaluates to more than 33. Some rendering is
visible on Figure 42.

We remark that a prism can be triangulated as a gasket with turn 0, the whole
construction thus corresponds to the pattern (g2b)5g2(bg)3b and is composed of 15 × 6 +
9×20 = 270 triangles. This ends the proof of Proposition 6. Figure 43 shows the resulting
unfolded triangulation after cutting through a cross section and a longitude.

5.2 Three families of diplotori suffices to realize short
flat tori

We now turn to the realization of short tori with modulus in Mshort =
{
τ : |τ | ≥ 1, |ℜτ | ≤ 1

2 ,ℑτ ≤ 33
}

.
Recall the diplotorus construction of Section 3.4. Arnoux, Lelièvre and Málaga showed

the following realization theorem:

Theorem 10 (Arnoux, Lelièvre and Málaga - 2021). For h, a ∈ R and n, d ∈ Z, Da,h
n,d is

an embedded flat torus if and only if

h > 0, n > 4, 2 ≤ |d| < n− 2 and
{
d+ 1 < a < n− 1 if d > 0
1 − n < a < d− 1 if d < 0 .
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Moreover, the modulus of Da,h
n,d is τ(n, d, a, h) = τ1(n, d, a) + iτi(n, d, a, h) with

τ1(n, d, a) = d/n−
cos((a− d)π

n
) sin(dπ

n
)

n sin π
n

and

τi(n, d, a, h) =
√h2 + 4 sin2(a+ 1

2 · π
n

) sin2(a− 1
2 · π

n
) +

√
h2 + 4 sin2(a− 2d+ 1

2 · π
n

) sin2(a− 2d− 1
2 · π

n
)
 /(2n sin(π/n))

The map τ1 does not depend on h while τi is an increasing function of h. It follows that
for n and d fixed, the moduli of the flat tori Da,h

n,d form a subset of H2, which we denote by
Mn,d, that lies above the graph of the parametrized curve a 7→ (τ1(n, d, a), τi(n, d, a, 0)),
where a varies as in Theorem 10. For n and d fixed, the diplotori Da,h

n,d have the same
abstract triangulation. If one could cover the moduli space with a finite number of regions
Mn,d, this would therefore provide a universal triangulation. This is however impossible
and one needs to let n grow to infinity in order to realize all the rectangular flat tori. We
can nonetheless cover the moduli of short flat tori with only three regions Mn,d.

The fundamental domain F =
{
z : |z| ≥ 1, |ℜz| ≤ 1

2

}
is symmetric with respect to the

imaginary axis. Two symmetric points τ and −τ̄ actually represent isometric tori, but the
isometry should reverse the orientation. Hence, if Tτ has a PL isometric embedding in
R3 so does T−τ̄ : just take a reflected image of the embedding of Tτ . It is thus enough to
realize the positive part M+

short := {[τ ] ∈ Mshort : τ1 ≥ 0} of the short flat tori to ensure
that we can realize all of them.
Remark 1. From Section 2.5.3, the moduli space of flat tori is the quotient of H2 by the
action of PSL2(Z). To realize all the short flat tori, it is thus sufficient to realize their
moduli in any image of M+

short under the action of PSL2(Z). Figure 44 shows such an

image. The top side τi = 33 of M+
short is transformed by gδ =

(
0 1

−1 δ

)
∈ PSL2(Z) to an

arc of circle, called a horocycle, tangent at 0 to the real axis. In Figure 44, the blue and
yellow lines are part of the Dedekind tesselation of the hyperbolic plane. It tiles H2 into
hyperbolic triangles with one ideal vertex. Each such triangle is a fundamental domain
for the action of the extended modular group PGL2(Z). This action includes orientation
reversing transformations so that adjacent triangles have opposite orientations.

Lemma 11. Any modulus in M+
short can be geometrically realized by a diplotorus with

parameters n = 19 and d ∈ {2, 7, 13}.

We need to check that M+
short is covered by the orbit of M19,2

⋃M19,7
⋃M19,13 under

the action of PSL2(Z). Equivalently, writing g · M+
short for the image of M+

short by
g ∈ PSL2(Z), we must have that⋃

g∈PSL2(Z)
g−1 ·

(
(g · M+

short)
⋂

(M19,2
⋃

M19,7
⋃

M19,13)
)

covers M+
short (or any of its images). The regions M19,2,M19,7 and M19,13, deduced from

the formulas of Theorem 10, are plotted in Figures 45 and 47.
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0 1

M+
short

0

i
33

Figure 44: The image (in dark grey) of M+
short by the action of

(
0 1

−1 1

)
∈ PSL2(Z).

The top horizontal line (in red) represents the horocycle τi = 33 (not to scale). Its image

by
(

0 1
−1 1

)
is a circle (in red, not to scale) tangent at 0 to the real axis.
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M19,2

M19,2

M19,7

M19,13

Figure 45: The moduli space for M19,2 (in green), M19,7 (in purple), and M19,13 (in red).
The axes in the bottom enlargement have different scales; the horocycle (thick purple
line), image of {τi = 33} by the elements of ∆, appear as an arc of ellipse.

Denote by M+ the part of the fundamental domain F with non-negative real part.
M+ is bounded by the geodesic triangle with vertices 0, eiπ/3,∞. In particular, it contains

M+
short. Consider the subset ∆ of PSL2(Z) composed of the matrices gδ :=

(
0 1

−1 δ

)
with

δ a positive integer. The elements in ∆ transform M+ into a fan of triangular domains
with positive real part, tangent at 0 to the imaginary axis. They moreover transform each
horocycle {τi = constant} into a circle, independent of δ, and tangent at 0 to the real axis.
Larger constants give rise to smaller circles. Two such circles cut the transforms of M+

by ∆ into slices that are themselves transforms of a same slice in M+. Figure 46 and 47
demonstrate that we can slice M+

short so that each slice has a transform by respectively
g1, g3, g5 (in yellow, blue, and red on the figure) covered by M19,2

⋃M19,7
⋃M19,13. It

follows that

M+
short ⊂

⋃
δ∈{1,3,5}

g−1
δ ·

(
(gδ · M+

short)
⋂

(M19,2
⋃

M19,7
⋃

M19,13)
)
,

which proves the lemma. This proof by picture can be made formal by computing the
exact arrangement of the involved domains, whose boundaries are made of arcs of circles
and line segments. The details are provided in Appendix A.

From Lemma 11 we can construct a universal triangulation for short tori. Indeed,
all the diplotori with fixed parameters n, d have the same abstract triangulation, that
we denote by Tn,d. Hence, we just need a common subdivision of T19,2, T19,7 and T19,13
to obtain such a universal triangulation. In fact, we can replace T19,13 by T19,6 in the
overlay. Indeed, considering the symmetric of a diplotorus with respect to a horizontal
plane, we easily deduce the existence of an orientation reversing isomorphism between
Tn,d and Tn,n−d. It is thus enough to compute a common refinement of T19,2, T19,7 and
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1.0

ti=33

ti=25

ti=12

Figure 46: A slicing of M+
short (not to scale) in three regions (yellow, blue and red)

bounded by the horocycles τi = 33, 25, 12 (respectively in purple, orange and black) and
the (truncated) hyperbolic tesselation associated to the modular group.
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Figure 47: The three regions in red, blue and yellow are images of the corresponding slices
in M+

short by g1, g3, g5, respectively.

T19,6 to obtain a universal triangulation for short flat tori. These three triangulations are
obtained by identifying the boundaries of a same triangulated cylinder. However, they
are not isomorphic, as one needs to apply distinct circular shifts before identification. We
can nonetheless send them in a same torus as follows. For k ∈ Z, consider the points

Ak = (k,−1), Bk = (k, 0), Ck = (k, 1)

in the infinite plane strip B := R×[−1, 1]. Then T19,d is isomorphic to the triangulation of B
by the triangles {AkAk+1Bk, BkAk+1Bk+1, CkCk+1Bk−d, Bk−dCk+1Bk+1−d}k∈Z quotiented
by the horizontal translations generated by the vector (19, 0), further identifying the two
boundaries according to the vertical translation (0, 2). This quotient and identification
being independent of d, the three triangulations for d = 2, 6, 7 are indeed embedded in a
same torus, see Figure 44.

We overlay the three triangulated strips obtained for d = 2, 6, 7. We want to count the
number of vertices of the resulting subdivision. We only have to care about the edges BkCℓ,
the other ones being common to the three triangulations. The strip B being 1-periodical
in the horizontal direction, it is sufficient to consider the number of intersections with
the other edges of the 5 edges B0Ck for k ∈ I := {2, 3, 6, 7, 8}. The edges B0Ck and
BℓCℓ+j, j ∈ I, intersect in their interior if and only if

• ℓ < 0 and ℓ+ j > k, or equivalently k − j < ℓ < 0, or

• ℓ > 0 and ℓ+ j < k, or equivalently 0 < ℓ < k − j.
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B0 B1 B6 B7 B8

A0 A1 A6 A7 A8

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

L̃ext

L̃int

C0 C1 C2 C3 C6 C7 C8 Ck Ck+1

Bk Bk+1

Figure 48: Layout of the triangulations T19,2, T19,6 and T19,7. Left, the two sub-strips L̃int
and L̃ext correspond to the (lift of the) overlay of the internal and external ploids. Right,
a period of L̃ext contains 20 intersection points from the overlay of the external ploids.

In this case, we compute pkℓ,j := B0Ck
⋂
BℓCℓ+j = ℓ

k−j (k, 1). All other intersection
points are horizontal translates of the pkℓ,j by an integral amount. The set of intersection
points with x-coordinate in [0, 1) is thus given by

{
(frac

(
ℓk
k−j ,

ℓ
k−j

)
)
}
j,k,ℓ

where j, k, ℓ vary
as above and frac(x) is the fractional part of x. Eliminating the duplicates, we found
20 intersections leading to n × 20 = 380 intersection points in total. See Figure 48.
Adding the remaining points Ak, Bk (Ck and Ak should be identified) we find a total of
380 + 38 = 418 vertices. It remains to triangulate the subdivision by adding diagonals
in the non triangular faces. By Euler’s formula on the torus, we conclude that the
triangulated overlay has 836 triangles. We have thus proved

Proposition 12. There exists an abstract triangulation with 836 triangles, which admits
linear embeddings isometric to every short flat torus.

5.3 Merging long and short flat tori
It remains to overlay our universal triangulations for long and short tori to obtain a
universal triangulation for all flat tori. Before overlying the layouts of Figures 43 and 48,
we perform some modifications. We first remove the diagonals introduced to triangulate
the rectangular faces of the bends are they are not necessary to define the PL isometric
embeddings of long tori. For the same reason, we remove the diagonals used to triangulate
the three portions of right prisms. Compare Figure 43 and top Figure 49. Denote by Llong

the resulting layout. It is composed of three horizontal strips, where the top one has no
internal vertex. Llong also divides into 33 vertical bands corresponding to 9 bends (each
made of two bands), 12 gaskets and 3 portions of right prisms. We squeeze the last 15
bands to the width of a single one. We now view Llong as composed of 19 bands of equal
length, where the last one contains the 15 squeezed bands. See middle Figure 49. Denote
by H the common height of the three horizontal strips of Llong. We next consider the
layout of the short tori, call it Lshort. It decomposes into two horizontal strips Lint

⋃Lext

corresponding to the internal and external ploids; compare Figure 48 with bottom of
Figure 49. The bottom strip Lint decomposes into 19 vertical bands that we align with
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Lint
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H
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Figure 49: Modified layout of the universal triangulations for long and short flat tori.

the ones of Llong. We also stretch Lint and Lext vertically so that their heights becomes
respectively 2H and H. We are now ready to overlay Lshort and Llong as shown at the
bottom of Figure 49. Note that the (universal) subdivisions for short and long flat tori
are obtained from the corresponding layouts by applying the same identifications of their
horizontal and vertical sides. Applying these identifications to the overlay of the layouts
thus provides a common refinement of the subdivisions for short and long flat tori.

To enumerate the vertices of the overlay we consider adding the edges of Lshort

to the layout of Llong. The horizontal and vertical edges of Lshort can be mapped to
the corresponding edges of Llong without introducing new vertices. Note that the three
horizontal edges in the last band of Lshort are each subdivided into 15 edges. The diagonals
of Lint are inserted as follows. Among the 18 first diagonals, the ones inserted in a band
corresponding to a bend in Llong introduce 6 crossings each, while the ones inserted in a
band corresponding to a gasket introduce 1 crossing each. See bottom left of Figure 50.
This introduces 6Eb + Eg vertices in total, where Eb = 10 and Eg = 8 are the respective
numbers of bands of type bend and gasket. After subdivision, the 19th diagonal can be
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inserted without introducing any vertex as shown at the bottom of Figure 50. Apart
from their own intersections, the slanted edges of Lint cross the vertical and diagonal
edges in the upper strip of Llong. We deform these edges in the 18 first bands in order
to minimize the number of new crossings . See the top part of Figure 50. This way, the
slanted edges of Lint introduce 2 crossings per vertical edge and 16 crossings per diagonal
of Llong. In total, this leads to 2Ev + 16Ed crossings, where Ev = 19 and Ed = 8 stand
for the respective numbers of verticals and diagonals in the 18 first bands of the upper
strip. Finally, each vertical or diagonal in the interior of the squeezed part of Llong crosses
all the slanted edges BlCl+j of Lint that surround its extremities. Since the considered
verticals and diagonals are squeezed in the interior of a band of width 1, this leads to∑
j∈I j = 26 crossings each. In total, we thus get 26(E ′

v + E ′
d) crossings in the squeezed

part, where E ′
v = 14 and E ′

d = 4 denote the respective numbers of vertical and diagonal
edges. To sum up, the overlay contains

− Vlong = 270/2 = 135 vertices from Llong as counted in Proposition 6,

− V∩ = 380 vertices from the intersecting edges in Lshort as computed in the proof of
Proposition 12,

− 6Eb + Eg = 68 vertices from the overlay of diagonals of Lint with Llong,

− 2Ev + 16Ed = 166 vertices from the overlay of the slanted edges of Lext with the 18
first bands of Llong,

− 26(E ′
v + E ′

d) = 468 vertices from the overlay of the slanted edges of Lext with
squeezed part of Llong.

In total the overlay thus contains

Vlong + V∩ + 6Eb +Eg + 2Ev + 16Ed + 26(E ′
v +E ′

d) = 135 + 380 + 68 + 166 + 468 = 1217

vertices. By Euler’s formula this corresponds, after adding diagonals to triangulate the
overlay, to 2434 triangles. this ends the proof of Theorem 5.
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Figure 50: Overlay of the universal triangulations for long and flat tori.
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Chapter 6

Realization of surfaces in H(2) and
H(1, 1)

Résumé en français. L’existence d’une triangulation universelle pour les tores plats
suggère l’existence de telles triangulations pour d’autres familles de surfaces. Nous avons
vu, en genre 0, que l’existence de triangulations universelles pour les surfaces dont le
nombre et le type des singularités sont fixés est une conséquence du théorème d’Alexandrov.
Fort de ces résultats positifs en genre g = 0 et g = 1, nous nous intéressons au cas du
genre g = 2. Nous nous concentrons dans ce chapitre sur les surfaces de translation de
genre 2, et plus particulièrement sur la strate H(2), bien que nos modèles admettent des
généralisations naturelles pour H(1, 1) que nous évoquons succinctement. Bien que nos
résultats ne permettent pas de conclure quant à l’existence d’une triangulation universelle
pour H(2), nos modèles permettent de réaliser un ouvert assez important de H(2) : un
voisinage ouvert de la famille des surfaces de H(2) admettant une décomposition en
L avec un parallèlogramme central rectangulaire et des parallélogramme périphérique
dont la hauteur relative est assez importante. Ces modèles sont relativement simples et
peuvent être utilisés à des fins de visualisation - réalisables par impression 3D ou pliage
papier. L’idée est de réaliser la surface en deux temps. Tout d’abord, nous réalisons le
parallélogramme central dans R3 en une sphère centrale PL admettant 4 bords triangulaires.
Les parallélogrammes périphériques pouvant quant à eux être réalisés grâce aux travaux
de Zalgaller sur les plongements de longs prismes droits. Ceci nous permet de réaliser la
surface en entier : il suffit de recoller les prismes droits courbés et tordus, correspondant
aux parallélogrammes périphériques, à la sphère centrale tout en prenant garde à ne pas
introduire d’intersection.
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In this chapter we present a family of relatively simple PL isometric embeddings of
surfaces in H(2), whereas the author is not aware of a previous related work. While
this family covers a hypersurface in H(2), our PL isometric embeddings underlie a single
triangulation valid for all the elements in the family. We even succeeded in realizing
an open neighborhood in H(2). Moreover, we manage to extend our method to embed
surfaces in H(1, 1).

Denote τ = a/b the ratio of the length longest side of the central parallelogram by the
length of its smallest side. While we give a proof of the fact that our constructions are
isometric embeddings in the rectangular case where the ratio τ is less than

√
3, we do

not present a proof in the case τ ≥
√

3 or in the more general skew case. Demonstrations
of the embedding property are computationally intensive in the latter case, and do not
appear in this document.

6.1 Result and idea of our approach
Recall that every surfaces in H(2) can be obtained from a gluing of parallel edges of a
polygon with a L shape formed by three parallelograms as explained in Section 2.7.3, see
Figure 51. In this decomposition, the central parallelogram gets its vertices identified
by the gluing forming a central sphere with four boundary components joining at the
singularity. Along these boundaries one should glue the two cylinders corresponding to
the peripheral parallelograms of the L. To do so, we first restrict to a subspace of H(2)
corresponding to the case where the central parallelogram is a rectangle. We describe
a universal triangulation for this case, relying on Zalgaller’s machinery described in
Section 3.3, assuming that the peripheral parallelograms are long enough. We then extend
our realization space to an open neighborhood of this subspace, thus covering a full
dimensional part in H(2).

In the following, by a geometric realization of a simplicial complex K in R3, we
mean an embedding |K| ↪→ R3 whose restriction to any face is affine. The relative height
of a right cylinder is the quotient of its height by its perimeter. We finally denote by Lrect

≥h
the subset of moduli in H(2) that admit an L decomposition whose central parallelogram
is a rectangle and whose peripheral cylinders have relative height at least h. The following
will be devoted to prove the following theorem.

Theorem 13. There exists a triangulation T of the closed orientable surface of genus 2,
a constant h > 0 and on open neighborhood O ⊂ H(2) of Lrect

≥h , such that for each element
σ ∈ O the triangulation T admits a geometric realization in R3 that is isometric to σ.

In our geometric realizations of moduli in Lrect
≥h , each of the four boundaries of the

central sphere is embedded as an equilateral triangle. This enables us to apply the
building blocks developed by Zalgaller to connect each pair of opposite boundaries with
a triangular prism, bended and twisted appropriately. The prisms, corresponding to
geometric realizations of the peripheral parallelogram of the surface in L, must be long
enough for this last construction to be feasible. Another relevant parameter of this
construction is the aspect ratio a/b ≥ 1 of a rectangle with long and short sides of
respective lengths 3a and 3b. When the central parallelogram is a rectangle, we consider
two cases according to whether its aspect ratio τ is smaller or larger that

√
3
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v1

v2

v3

v4

Figure 51: Standard L-decomposition of a surface of H(2) in three parallelograms (singu-
larity in red). The one spanned by (v1, v2) is called the central parallelogram, while
the other two are called peripheral parallelograms.

• In the case τ <
√

3, which includes the square case, the semi-infinite prisms based
at the four triangular boundaries of the central sphere are disjoint, allowing the
peripheral parallelogram to be glued easily by bending.

• In the case τ ≥
√

3, we need to be careful as the two semi-infinite prisms with
smaller cross-section intersect. In order to prevent intersection of the corresponding
glued cylinder, we rotate these two prisms and deform partly the central sphere
by performing some bending at the level of their attaching boundaries using a
construction reminiscent of Zalgaller’s bending procedure.

The above constructions enable to cover Lrect
≥h , a sub-region of H(2) of real codimension

1, or real dimension 7. Indeed, apart from the fact that the peripheral parallelograms must
be long enough, the only constraint of our construction is the rectangular shape of the
central sphere. This amounts to fix one angle parameter of the L decomposition, whence
the dimension. We show how to slightly modify the constructions in order to realize central
parallelograms that are almost rectangular (i.e. with internal angles close to the right
angle). Incidentally, by gluing each peripheral cylinder to successive triangular boundaries
of the central sphere rather than to opposite boundaries, we obtain a realization of a
flat surface of genus 2 with one singularity of conical angle 6π which is not a translation
surface.

6.2 Embedding of the central parallelogram of a sur-
face in H(2)

As previously mentioned, we first embed the central sphere of a surface in L to be able
to attach the two handles formed by the peripheral parallelograms. In this section, we
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describe, how to do so in the case where the central parallelogram is a square, a rectangle,
or a skew parallelogram close to be right.

6.2.1 Square case
When the central parallelogram is a square, we triangulate it as in Figure 52. The resulting
triangulation is denoted by T and we name its vertices S0, ..., S3, Q0, ..., Q3, P0, ..., P7 as
on Figure 52. Note that each side of the central square is cut into three equal parts
whose length is denoted by a. We then define a map f , linear on each face of T , which is
an isometric embedding of the central sphere. By linearity, we can just define f on the
vertices of T . Our construction admits a rotational symmetry of order 4 about the z-axis,
and a symmetry by reflexion across the xz-plane. More precisely let

• r be the rotation of R2 of angle π/2 about the origin O,

• sx be the reflexion across the x-axis in R2,

• ρ be the rotation of angle π/2 about the z-axis in R3, and

• σxz be the reflexion across the xz-plane in R3.

The map f then satisfies:

f ◦ r = ρ ◦ f and f ◦ sx = σxz ◦ f.

It thus suffices to specify the images of Q0, S0, P0 and O in order to define f . Since
S0, S1, S2, S3 are mapped to the same point by the identification of the L shape boundary,
their common image must lie on the z-axis by rotational symmetry. We choose to place
f(S0) at the origin Ω of R3. Note that, by the same rotational symmetry, the images of
the five vertices S0, Q0, Q1, Q2, Q3 form a pyramid with apex f(S0) = Ω and horizontal
square basis. The height of the pyramid must be

√
|Q0S0|2 − |OQ0|2 = a

√
3
2 since f

should preserve edge lengths. For the same reason, O must be sent to the center of
the pyramid basis and the distance from f(Q0) to the z-axis is |OQ0| = a√

2 . It follows
that f(Q0) lies on the horizontal circle of radius a√

2 with center
(
0, 0,

√
3
2a
)
. We choose

f(O) =
(
0, 0,−

√
3
2

)
and f(Q0) =

(
a
2 ,

a
2 ,−

√
3
2a
)

so that the sides of the basis are aligned
with the x and y-axes.

It remains to determine the coordinates of f(P0). For convenience, we denote X ′ the
image f(X) of a point X. Since f should be isometric, we must have |S ′

0P
′
0| = |S0P0| = a,

so that the spherical coordinates of P ′
0 are (a, θ, φ) for some angles θ and φ, meaning

that P ′
0 has Cartesian coordinates (a cos θ cosφ, a cos θ sinφ, a sin θ). By symmetry, we

have that P ′
7 = f(sx(P0)) = σxz(P ′

0) has spherical coordinates (a, θ,−φ). Moreover, the
equations |P ′

0P
′
7| = |P0P7| = a and |P ′

0Q
′
0| = |P0Q0| = a lead to Equations (6.1) and (6.2)

below.

sinφ = 1
2 cos θ (assuming φ ∈ [0, π/2] and cos θ > 0), (6.1)

3
2 −

√
cos2 θ − 1

4 +
√

6 sin θ = 0. (6.2)
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a

Figure 52: Triangulation of the central square. Dashed segments indicate coplanarity of
the underlying squares in our embeddings.

Indeed, we compute
−−→
P ′

0P
′
7 = (0, 2a cos θ sinφ, 0), hence |P ′

0P
′
7|2 = a2 is equivalent to

(6.1).
For the second equality, we compute

−−−→
P ′

0Q
′
0 = a

(
cos θ cosφ− 1

2 , cos θ sinφ− 1
2 , sin θ +

√
3
2

)
.

Using simple trigonometric equalities and Equation (6.1) allows to infer Equation (6.2).
The second equation solves to

sin θ = −1
7

√
33
2 − 9

√
2 =

(
1 − 3√

2

) √
3

7 .

Together with (6.1), this allows us to determine the coordinates of P ′
0. To summarize the

above discussion, we set:

S ′
0 = Ω the origin of R3,

O′ =
0, 0,−

√
3
2a
 ,

Q′
0 =

a
2 ,
a

2 ,−
√

3
2a
 , (C)

P ′
0 =

3a
7

√
9
4 −

√
2, a2 ,

(
1 − 3√

2

) √
3

7 a

 .
6.2.2 Rectangle case
Let 3a, 3b denote the length of the sides of the central rectangle, with a > b. Analogously
to the construction in the square case, we describe a map f linear on each triangle of the
triangulation of the central rectangle depicted in Figure 53. It is thus enough to define
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Figure 53: Triangulation of the central rectangle. Dashed segments indicate coplanarity
of the underlying rectangular face in our embeddings.

f on the vertices of this triangulation. Our construction admits symmetry by reflexion
across the xz-plane and the yz-plane. More precisely, denote by sy the reflexion of R2

through the y-axis and by σyz the reflexion of R3 through the yz-plane and recall the
definition of r, sx, ρ, σxz from the previous section. Then the map f satisfies:

f ◦ sx = σxz ◦ f and f ◦ sy = σyz ◦ f.

Since r2 = sy ◦ sx and ρ2 = σyz ◦ σxz, the set of vertices also admits a rotational symmetry
of order two about the z-axis. It is enough, to specify the images of S0, Q0, P0 and P1 to
define f . By symmetry, S0 is sent to the z axis and we choose f(S0) = Ω, the origin of
R3. Also by symmetry, the images of the five vertices S0, Q0, Q1, Q2, Q3 form a pyramid
of apex S0 with horizontal rectangular basis aligned with the x and y coordinates axes.
Setting δ =

√
a2 + b2, the height of the pyramid must be

√
3

2 δ as f should preserve edge
lengths. Moreover, the distance from f(Q0) to the z-axis must be half the length of the
diagonal Q0Q2, that is δ/2. So f(Q0) lies on the horizontal circle of radius δ

2 with center(
0, 0,−

√
3

2 δ
)

- we choose this center to lie below the xy-plane. Since the rectangular base
f(Q0)f(Q1)f(Q2)f(Q3) is aligned with the x and y axes in R3, each f(Qi) has coordinate(
±a

2 ,±
b
2 ,−

√
3

2 δ
)
. We choose f(Q0) =

(
a
2 ,

b
2 ,−

√
3

2 δ
)
.

It remains to determine the coordinates of f(P0) and f(P1). As previously, we write
X ′ for f(X). Since |S ′

0P
′
0| = |S0P0| = a and |S ′

0P
′
1| = |S0P1| = b, the spherical coordinates

of P ′
0 are (a, θ0, φ0) and those of P ′

1 are
(
b, θ1,

π
2 − φ1

)
for some angles θ0, φ0, θ1, φ1 (for

symmetry reasons we write π
2 − φ1 for the azimuthal angle of P ′

1). By symmetry, we
must have that P ′

7 = f(sx(P0)) = σxz(P ′
0) has spherical coordinates (a, θ0,−φ0) and that
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P ′
2 = f(sy(P1)) = σyz(P ′

1) has spherical coordinates
(
b, θ1,

π
2 + φ1

)
. Finally, the constraints

|P ′
0P

′
7| = |P0P7| = b and |P ′

1P
′
2| = |P1P2| = a lead to Equations (6.3) below while the

equalities |P ′
0Q

′
0| = |P0Q0| = a and |P ′

1Q
′
0| = |P1Q0| = b lead to Equations (6.4) and (6.5)

respectively.
To summarize the previous discussion, we set:

• S ′
0 = Ω the origin of R3,

• Q′
0 =

(
a
2 ,

b
2 ,−

√
3

2 δ
)
, where δ =

√
a2 + b2,

• P ′
0 = b(cos θ0 cosφ0, cos θ0 sinφ0, sin θ0) = b

(
cos θ0 cosφ0,

1
2 , sin θ0

)
,

• P ′
1 = a(cos θ1 sinφ1, cos θ1 cosφ1, sin θ1) = a

(
1
2 , cos θ1 cosφ1, sin θ1

)
,

where θ0, φ0, θ1 and φ1 satisfy Equations (6.3) , (6.4) and (6.5) below (assuming φi ∈
[
0, π2

]
and cos θi > 0).

sinφi = 1
2 cos θi

, i ∈ {0, 1}, (6.3)

3
2b+

√
3δ sin θ0 − a

√
cos2 θ0 − 1

4 = 0, (6.4)

3
2a+

√
3δ sin θ1 − b

√
cos2 θ1 − 1

4 = 0. (6.5)

Indeed, Equation (6.3) is obtained by a computation similar to the square case. For
Equation (6.4), we compute

−−−→
P ′

0Q
′
0 =

(
b cos θ0 cosφ0 − δ

2 cos α
2 , b cos θ0 sinφ0 − δ

2 sin α
2 , b sin θ0 +

√
3

2 δ
)
.

Using simple trigonometric equalities, and Equation (6.3) as in the square case, Equa-
tion (6.4) follows. Similar computations permit to deduce Equation (6.5).

Setting τ = a/b, the last two previous equations solve to

sin θ0 =
√

3
2

2a2 − 3bδ
4a2 + 3b2 =

√
3

2
2τ 2 − 3

√
1 + τ 2

3 + 4τ 2 (6.6)

and
sin θ1 =

√
3

2
2b2 − 3aδ
3a2 + 4b2 =

√
3

2
2 − 3τ

√
1 + τ 2

4 + 3τ 2 . (6.7)

By the symmetry of our construction, we infer

P ′
3 = σyz(P ′

0) = b
(

− cos θ0 cosφ0,
1
2 , sin θ0

)
(6.8)

P ′
4 = σxz(P ′

3) = b
(

− cos θ0 cosφ0,−
1
2 , sin θ0

)
(6.9)

P ′
7 = σxz(P ′

0) = b
(

cos θ0 cosφ0,−
1
2 , sin θ0

)
(6.10)
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and

P ′
2 = σyz(P ′

1) = a
(

−1
2 , cos θ1 cosφ1, sin θ1

)
(6.11)

P ′
5 = σxz(P ′

2) = a
(

−1
2 ,− cos θ1 cosφ1, sin θ1

)
(6.12)

P ′
6 = σxz(P ′

1) = a
(1

2 ,− cos θ1 cosφ1, sin θ1

)
(6.13)

6.2.3 Skew case
In this section, we extend the previous realization of the central parallelogram in the
non rectangular case. In fact, it appears that the previous construction is not rigid and
admits small deformations. Let θ ∈ (0, π) denote the angle in the bottom left corner of
the central parallelogram rotated so that its longest side is aligned with the horizontal
axis. Refer to Figure 54. Denote, as previously, τ = a/b the ratio of the length of the
longest side of the parallelogram by the length of the shortest one. For a given τ , we
are able to deform the triangulation of Figure 53 so that for every θ sufficiently close to
π/2 (where sufficiently close depends on τ) the corresponding triangulation of the central
sphere admits a linear isometric embedding. Actually, the previous construction in the
rectangular case can be seen as the limit (when θ tends towards π

2 ) of the construction
described in the present section.

Triangulation of the central parallelogram. The decomposition into polygons of
the central parallelogram in R2 is combinatorially identical while it differs slightly from
the previous rectangle case in its geometry.
We assume that the longest side of the parallelogram is aligned with the horizontal axis.
Let 3a denotes the length of the longest side of the parallelogram, 3b the length of its
shortest side, and θ ∈ (0, π) the angle in the bottom left corner. Refer to Figure 54.
Without loss of generality, we can suppose θ < π

2 : if not, we can apply a vertical reflexion
to the entire triangulation to ensure this condition. Divide in three each side of the
parallelogram introducing this way the points Pi for 0 ≤ i ≤ 7. Then draw the horizontal
segments P0P3 and P7P4. Now define Q0 as the intersection of the vertical line through
P1 and the horizontal segment P0P3. Similarly, define

• Q1 as the intersection of the vertical line through P2 and P0P3,

• Q2 as the intersection of the vertical line through P5 and the segment P4P7,

• and Q3 as the intersection of the vertical through P6 and P4P7.

All the vertices of the triangulation are now introduced, and it remains to link them with
edges as in Figure 53 or 54

Iterative construction of the images of the vertices. We define the images of
the vertices iteratively. First, we send the four points S0, S1, S2, S3 corresponding to the
singularity to the origin Ω of R3. Then, noticing that the image of S1Q1Q3S3 is a triangle,
we choose to realize this triangle in the Oxz plane of R3 with the image of Q1Q3 horizontal.
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Figure 54: Triangulation of a skew central parallelogram.

This determines entirely the images of Q1 and Q3. We next construct the images of Q0
and Q2. As there is an edge from each Qi, i = 0, 2, to Q1, Q3 and Sj, we have 3 distances
that determines Qi as the intersection of 3 spheres centered at Q1, Q3 and one of the Sj.
Of course, the spheres have to intersect for the images of Q0 and Q2 to be well defined,
and there is a choice to do as three spheres may intersect in several points, and generically
intersect in two points. In fact, unless the three sphere centers are aligned, the spheres
may only be disjoint or only have two intersection points. In the latter case, let us denote
by ι(X1, ρ1, X2, ρ2, X3, ρ3, ε) - for X1, X2, X3 ∈ R3, ρ1, ρ2, ρ3 > 0 and ε = ±1 - the point
at distance ρi from Xi, for i = 1, 2, 3, which lies in the half-space delimited by the plane
(X1X2X3) towards the direction given by ε−−−→

X1X2 ∧
−−−→
X1X3. For conciseness, we will drop

the radii arguments of ι, as they can be deduced from the triangulation in Figure 54. The
procedure to compute the images of the vertices is the following:

1. initialize S ′
i = Ω the origin of R3, Q′

1 =
(
−1

2 |Q1Q3|, 0,−h
)

andQ′
2 =

(
1
2 |Q1Q3|, 0,−h

)
- where h2 = |S1Q1|2 − 1

4 |Q1Q3|2,

2. compute Q′
0 = ι(Ω,Q′

1, Q
′
3, 1) and Q′

2 = ι(Ω,Q′
1, Q

′
3,−1),

3. compute P ′
2 = ι(Ω,Q′

0, Q
′
1,−1), P ′

6 = ι(Ω,Q′
2, Q

′
3,−1), P ′

3 = ι(Ω,Q′
1, Q

′
2,−1),

P ′
7 = ι(Ω,Q′

0, Q
′
3, 1),

4. Finally compute: P ′
0 = ι(Ω,Q′

0, P
′
7, 1), P ′

4 = ι(Ω,Q′
2, P

′
3, 1), P ′

1 = ι(Ω,Q′
0, P

′
2,−1),

P ′
5 = ι(Ω,Q′

2, P
′
6,−1).
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Figure 55: PL isometric embedding of a skew parallelogram with τ = 1 and θ = 69◦.

We argue below that these constructions provide PL isometric embeddings for θ
sufficiently close to π/2. An example of such an embedding is given in Figure 55.

Sketch of proof that the construction is well embedded. As previously noted, the
triangulation of a central rectangle as in Section 6.2.2 is a deformation of the triangulation
of a parallelogram which converges to the triangulation for the rectangular case when
the angle θ tends toward π/2. The same is true for the global realization of the central
parallelogram. Moreover, each intersection computation ι(X1, X2, X3, ε) that appears in
the above steps 2, 3, 4 is well defined in the limit rectangular case and remains so for θ
sufficiently close to π/2. The embedded character of our PL map can be certified by a
set of inequalities corresponding to the fact that each disjoint pairs of simplices in the
central parallelogram have disjoint images. Indeed, in general a linear image of a simplicial
complex is an embedding if and only if every pair of disjoint simplices in the complex
have disjoint images [Laz20, Lemma 3.2.1]. At a given τ , these inequalities are strictly
satisfied for θ = π/2. Hence, since the skew triangulation converges to the triangulation
in the rectangular case, the inequalities satisfying that any two disjoint simplices have
disjoint images remain valid for θ sufficiently close to π/2.
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Figure 56: Embedding of a central square (corresponding to τ = 1) in blue. The green
”branches”, corresponding to orthogonal continuations of the triangular boundaries, only
intersect at the singularity.

6.3 Embedding of an entire surface of H(2) with long
peripheral parallelograms

We saw in the last section how to embed the central parallelogram of a surface of H(2)
close to Lrect. We now explain how to extend this embedding to an embedding of the
whole surface. We use Zalgaller’s machinery, and derived tools from his work in [Zal00],
to complete the construction by embedding the two remaining peripheral parallelograms
as part of bended and twisted right prisms. In the rectangular case, there are two cases to
consider, depending on the ratio τ = a/b of the length of the longest sides of the rectangles
over the length of the smallest sides. Moreover, as in Zalgaller’s paper, our method only
works when the relative height of the peripheral parallelograms are sufficiently large.

Case where the ratio τ of the longer side of the rectangle with its smaller side
is less than

√
3

This case is simpler, as there is no need to modify the central parallelogram to obtain
an embedding. Indeed, in this case, the plane spanned by each boundary triangle is
supporting: the embedding of the central rectangle lies on one side of this plane. See
Figure 56. Hence, the interior of the orthogonal continuations of the triangular boundaries
do not intersect. It suffices, and it is possible, to attach the two peripheral parallelograms
to the central sphere without creating intersection. See Figure 57 for an example of
embedding of such a surface with a square basis. We refer to Section 6.5 for proofs of the
previous mentioned facts.

Case where the ratio τ of the longer side of the rectangle with its smaller side
is greater or equal than

√
3

In this case, the previous method failed as the two planes spanned by the two small
boundary components are not supporting anymore: the orthogonal continuation of the
two thin branches intersect - see Figure 58. To remedy this situation, it is possible to
apply a bending to the beveled part of right prisms corresponding to the two thin branches
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Figure 57: Embedding of a surface of H(2) with a square basis and long peripheral
parallelograms.
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Figure 58: Isometric realization of the central rectangle of a surface in H(2) that present
self-intersection. The two top pictures represent the limit case (τ =

√
3), while the two

bottom pictures illustrates the case τ = 7
3 .

of the central rectangle using opposed ribs, in order to make these two branches disjoint,
see Figure 59. Doing so, we are able to glue the remaining peripheral parallelogram as a
part of bended and twisted right prism as in the previous case, obtaining embedding of
the entire surface. See Figure 60 for an example. As in the case τ <

√
3, the proof relies

on Appendix B, and the fact that the semi-infinite half-prisms bended as on Figure 59 do
not intersect.

6.4 Alternative constructions to realize surfaces in
H(2)

In the previous sections we give a way to realize surfaces of H(2) with rectangle central
parallelogram and long peripheral parallelograms. Here, we investigate two other methods
to do so, introducing constructions that are interesting in their own rights. The first one
amounts to bending the thin branches at a negative angle as opposed to the ”positive”
bending described in Section 3.3. The second method is to change the subdivision of the
central rectangle, replacing the rectangle Q0Q1Q2Q3 in Figure 53 by an c× d rectangle
with 0 < c ≤ a and 0 < d ≤ b. When c ̸= a or d ̸= b, the configuration imposes the
boundary components of the central sphere to be isosceles but non equilateral triangles.
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Figure 59: Bending of the two thin branches of an isometric realization of the central
rectangle of a surface of H(2), resulting in an embedding. Here τ = 7

3 as in Figure 58.
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Figure 60: PL isometric embedding of a surface in H(2), with τ = 7
3 and long peripheral

parallelograms.
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Figure 61: Left: the two initial isosceles triangles. Right: the two triangles after contraction
of the common side AB.

Though it is possible to adapt Zalgaller’s machinery of Section 3.3 in this context, we
introduce a new original tool that permits to change the cross-section of a triangular right
prism, going from isosceles to equilateral.

6.4.1 Bending at a negative angle
A preliminary construction. Consider two isosceles triangles ABC and ABD in R3

sharing a common side AB. Let 2λC be the angle at C of ABC, and let 2λD be the
angle at D of ABD. We also denote by γ the dihedral angle between the two triangles.
Refer to Figure 61. We view the four edges AC,CB,BD and DA as forming a rigid
framework with idealized ball joints at each vertex. Our goal is to deform this framework
while maintaining a PL isometric embedding of the union ABC ∪ ABD. Denote by
A′, B′, C ′, D′ the vertices of the deformed framework and by 2µC and 2µD the angles of
A′B′C ′ and A′B′D′ at C ′ and D′ respectively. Of course, A and B can only get closer in
the deformation, for otherwise the shortest path distance between A′ and B′ would be
larger than |AB|, preventing the deformation to be isometric. For analogous reasons we
must have µC ≤ λC and µD ≤ λD. We finally denote by γ′ the angle between the two
planes (A′B′C ′) and (A′B′D′).

We construct the PL isometric embedding as follows. We first pleat the edge AB by
moving its middle point M to a point M ′ in the plane through AB bisecting the angle
γ′. The problem is now to pleat the triangle ABC (in an isometric way) to fit the new
boundary A′M ′ ∪M ′B′ ∪B′C ′ ∪ C ′A′. For this, we rely on the preliminary construction
elaborated by Zalgaller [Zal00, §2] (see also Section 3.3). It starts by folding ABC along its
height MC until the distance between A and B equals |A′B′|. The resulting two-winged
shape, call it ΣC , may thus be moved rigidly so as to make its AC and BC sides coincide
with A′C ′ and B′C ′ respectively. The point M reaches a position M ′′ and the goal is
to further pleat ΣC so as to rotate A′M ′′ ∪ M ′′B′ about the axis (A′B′) and make M ′′

coincides with M ′. This is obtained by cutting and reflecting parts of ΣC using planes
through A′B′. We refer to Figure 23. Note that there are two rigid motions applying ΣC

to A′C ′ ∪B′C ′. Accordingly, the number of reflections used to pleat ΣC may be chosen
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A′

C ′

D′

M ′

B′

ΣD

ΣC

Figure 62: Final shape of our preliminary construction. Here, only one reflexion was
applied to ΣD, while two reflexions were applied to ΣC .

even or odd. After pleating in a similar way the two-winged shape ΣD corresponding to
ABD, we obtain the desired PL isometric embedding of ABC ∪ ABD with boundary
A′C ′ ∪C ′B′ ∪B′D′ ∪D′A′. An example of the resulting pleating can be seen in Figure 62.

Bending at a negative angle. In this section, we adapt the bendings developed by
Zalgaller in [Zal00] to handle negative angles. In the original construction of Zalgaller (see
Section 3.3) the construction is rotated along a rib CC ′ towards the third point D of the
corresponding cross-section. Considering this as a rotation of positive angle, a bending
with negative angle would rotate the construction in the other direction, using the third
point D as a pivot. Compare the diagrams in Figure 29 and Figure 63.

After choosing the rib CC ′ where we want to perform a negative bending, consider
the pyramid D ∗ ABB′A′ with apex D and square basis ABB′A′ centered at O as in
Figure 64. To bend the prism at an angle φ < 0 along the rib CC ′, we do the following
(see Figure 64 and 63):

(a) Remove from the right prims its intersection with the pyramid, leaving two half
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Prism with equilateral section CDC'

Cut red quadrilaterals DB0OA0 and DB'0OA'0

Bent cut prism at angle φ while
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Figure 63: The different steps to bend a prism at a negative angle.
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B'C 'A'

B

D

D
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A1

B1
'

A1
'

B1

Figure 64: Bending at negative angle. Left: the initial right prism. Right: the cut and
bent prism, in red are indicated the contractions of the basis using the preliminary.

beveled prisms joined at D.

(b) Rotate one half prism at an angle −φ. The vertices A,B,A′, B′ are moved to
A1, B1, A

′
1, B

′
1, respectively.

(c) Move the center O of the pyramid to a position O1 towards D so that its distance
to A,B,A′, B′ remains unchanged after rotation.

(d) Add the triangles A1A
′
1O1 and BAB

′
1O1 to the construction. According to the

previous move, they are isometric to AA′O and BB′O.

(e) Finally, apply the preliminary construction of the previous paragraph to the quadri-
laterals ABO∪ABD and A′B′O∪A′B′D in order to contract their respective basis
AB and A′B′ to A1B1 and A′

1B
′
1, respectively.

An analysis analogous to the positive angle case shows that such a pleating is possible
if the cutting angle λ := 1

2∠ADB satisfies the inequality: λ > λ0(φ) := arctan
(√

3
2 tan φ

2

)
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Figure 65: Some renderings of a bending at negative angle. It is composed of two
preliminary constructions joining at O1, and the two elevated triangles A1A

′
1O1 and

B1B
′
1O1.

(this angle corresponds to the case where A1B1 and A′
1B

′
1 coincide). Note that |AO| <

|AD|, so that moving O to O1 in step (c) lies inside the deformed pyramid D ∗A1B1B
′
1A

′
1.

Some renderings of the construction can be seen in Figure 65.

6.4.2 Modifying the bottom face of the central sphere with
boundaries

We saw in Section 6.2 how to realize the central parallelogram of a surface in H(2) when
this parallelogram is almost right angled. We now describe some variations of this model
that allow to vary the obtained shapes. When c, d → 0, the construction is well embedded
as construction becomes closer and closer to a kind of cone with cross shape in a such a
way that each triangular boundary becomes supporting. This way, we are able to uncross
central spheres in the case τ ≥

√
3 for all c, d sufficiently small by continuity. However,

the exact bounds below which the construction becomes an embedding are difficult to
compute.

Recall the setting of Section 6.2. We have a 3a× 3b central rectangle of some surface
in H(2) that we want to realize in R3 as a PL sphere with four triangular boundaries. In
Section 6.2, we chose the four boundaries to be equilateral. Here, we relax this constraint
and allow the boundaries to be isosceles. This allows us to slightly change the shape of
the final construction, and enables to change the direction of the ”branches”.

112



d3b

b′

3a

ca′

S3

P7

P0

S0P1

Q0

Q3

P6P5

Q2

Q1

P2S1

P3

P4

S2

Figure 66: New triangulation of the central rectangle. Dashed segments indicate copla-
narity of the corresponding rectangle in its final realization in R3.

Let c, d > 0 so that c ≤ a and d ≤ b. In Section 6.2 we decompose the central rectangle
into 9 isometric rectangles and add a diagonal in each of them to form a triangulation. In
the modified construction we use the same combinatorial triangulation but we move the
vertices Qi and Pj. After subdividing the rectangles, this gives the desired triangulation
as on Figure 66.

Given that new the triangulation, we proceed in a similar way as in Section 6.2 for the
skew case. We first send S to the origin Ω of R3. Note that the images of the points Qi

and Si form a pyramid with rectangular basis with h =
√

3
2

√
3(a2 + b2) − 2(ac+ bd). As

usual, denote X ′ the image in R3 of a point X of the central rectangle by our realization.
We chose to align the side Q′

0Q
′
1 with the Ωx axis, leading to the following coordinates:

Q′
0 =

(
c
2 ,

d
2 ,−h

)
, Q′

1 =
(
− c

2 ,
d
2 ,−h

)
, Q′

2 =
(
− c

2 ,−
d
2 ,−h

)
, Q′

3 =
(
c
2 ,−

d
2 ,−h

)
.

Once the images of the singularity and the Qi are determined, it is possible, step by
step, to compute the coordinates of the remaining vertices of the central rectangle - the Pi
- as intersections of spheres. As, by coplanarity, each Pi in the triangulation is incident via
an edge to at least three points from {Si, Qi}0≤i≤3, it is possible to compute their image
for the final realization to be isometric.

Some example of such a modified realization is given in Figure 67.

6.4.3 Interpolating distinct isosceles sections with a cylinder
We saw in the preceding section how to modify the embeddings of Section 6.2 to avoid
intersection of the orthogonal continuations of the beveled part of prism. However,
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Figure 67: Variation of the realization of the central rectangle with τ = 7/3, and c/d = 1
- more precisely c = d = b. The green branches do not intersect in this case. Compare
with the bottom of Figure 59.
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the present case where Q0Q1Q2Q3 has size c × d with c, d ̸= a, b makes the triangular
boundaries of the realized central sphere isosceles non equilateral. Looking at the details
of the bending procedure, it is not hard to see that Zalgaller’s machinery can be adapted
to the isosceles non equilateral case. Indeed, the very same bending procedure still works if
the rib is chosen to be the base of the isosceles section. However, this requires longer prisms
than in the equilateral case and would apply to fewer L shapes. These considerations
motivate the introduction of a new tool that allows to modify the cross-section of a right
prism.

Consider a triangle C0C2C4, isosceles at C0, with perimeter (length) L. The goal is to
find a PL isometric embedding of the cylinder C0C2C4 × [0, h] with one boundary equals
to C0C2C4 and the other one an equilateral triangle C1C3C5 of perimeter L. To do so,
we give a plane pattern for the pleating, see Figure 68. To compute the coordinates of
the images C ′

i of Ci by our linear embedding, we first assume that L = 3, i.e. that the
equilateral has unit side. We then rotate the construction in R3 so that the equilateral
triangle lies the xy-plane and more explicitly so that:

C ′
0 = (0, 0),

C ′
2 = (eiπ/6, 0) and

C ′
4 = (e−iπ/6, 0).

where we identified R3 with C × R to denote the coordinates of the points.
Now, since the triangles C0C1C2 and C0C4C1 are right angled at C0, the segment

C ′
0C

′
1 must be orthogonal to both C ′

0C
′
2 and C ′

0C
′
4, hence must be vertical. We thus have

C ′
1 = (0, h) choosing to place the construction in the upper xy-halfspace.

In order to determine C ′
3, we remark that its distances to C ′

1, C
′
2, C

′
4 can be read on

the unfolding in Figure 68. Indeed, the preservation of the edge lengths and the planarity
of C ′

2, C
′
3, C

′
4, C

′
5 imply that:

C ′
3C

′2
1 =

(
3 − δ

2

)2

,

C ′
3C

′2
2 = h2 +

(
1 − δ

2

)2

,

C ′
3C

′2
4 = h2 +

(
1 + δ

2

)2

where we denoted by δ the distance between C3 and C5.
Let C ′

3 = (v, z) with v = x+ iy. We must have:

|v|2 + (h− z)2 = C ′
3C

′2
1 ,

|v − eiπ/6|2 = C ′
3C

′2
2 ,

|v − e−iπ/6|2 = C ′
3C

′2
4 .
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After expanding the equations, we obtain the equivalent system:

|v|2 + h2 − 2hz + z2 =
(

3 − δ

2

)2

, (6.14)

|v|2 + 1 − 2ℜ(ve−iπ/6) + z2 = h2 +
(

1 − δ

2

)2

(6.15)

|v|2 + 1 − 2ℜ(veiπ/6) + z2 = h2 +
(

1 + δ

2

)2

. (6.16)

Subtracting (6.15) and (6.16), we deduce:

2ℜ(v(eiπ/6 − e−iπ/6)) =
(

1 − δ

2

)2

−
(

1 + δ

2

)2

,

which solves to
y = δ

2 . (6.17)

Subtracting now (6.15) from (6.14), we obtain:

h2 − 2hz − 1 + 2ℜ(ve−iπ/6) =
(

3 − δ

2

)2

−
(

1 − δ

2

)2

− h2.

After expanding and reordering the terms, we get:

z = z(x) = 1
2h

(√
3x+ 2h2 + 3

2δ − 3
)
. (6.18)

Now, plugging (6.17) and (6.18) into (6.16), we get a quadratic equation for x given
by ax2 + bx+ c = 0 with:

a = 1 + 3
4h2

b = 3
√

3(δ − 2)
4h2

c = 9
4

(
(1 − δ)2

h2 + 2
3δ − 1

)
.

We easily compute the discriminant

∆ = 3(3 − 2δ) − 9
4h2 (4δ2 − 6δ + 1) − 3δ

16h4 (27δ − 36).

By the symmetry of the construction, and the fact that C ′
2, C

′
3, C

′
4, C

′
5 are copla-

nar, C ′
5 must be symmetric to C ′

3 with respect to the xz-plane. Moreover, h must be
large enough for ∆ to be nonnegative. In which case the solution for C ′

3 is given by(
x = −b+

√
∆

2a , y = δ
2 , z = z(x)

)
. We can check that this solution leads to an embedding of

the right cylinder C0C2C4 × [0, h]. The other solution with x = −b−
√
∆

2a consists in reflecting
the three faces C ′

1C
′
2C

′
3, C ′

2C
′
3C

′
5C

′
4 and C ′

4C
′
5C

′
1 with respect to the plane C ′

1C
′
2C

′
4. This

would have however introduced self-intersection in the corresponding surface.
Some rendering of the construction can be seen in Figure 69. Note that the two

triangular boundaries are not parallel anymore. If necessary, it is possible to apply the
multiple reflections technique of the Zalgaller’s preliminary construction - see Section 5.1 -
to make the triangular sections parallel as illustrated in Figure 70.
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C0
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C0

C1

C3
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C1

δ1

Figure 68: Pattern of our construction, that ”interpolates” a triangle C0C2C4 isosceles
at C0, and an equilateral triangle C1C3C5 with same perimeter as C0C2C4. The top and
bottom edges should be glued to form a cylinder. Note that in our geometric realization,
the four points C2, C3, C4, C5 have coplanar images.

6.5 Proof that the geometric realizations of surfaces
of H(2) are well embedded in the case τ <

√
3

6.5.1 Square case
Symmetry by rotation of angle π

2 . By construction the candidate embedding f is
invariant by the rotation ρ of angle π

2 and axis Oz. We have more precisely, recalling the
notation V ′ = f(V ):

• ρ(S ′
0) = S ′

0,

• ρ(O′) = O′,

• ρ(Q′
i) = Q′

i+1, i ∈ J0, 3K (i mod 4),

• ρ(P ′
i ) = P ′

i+2, i ∈ J0, 7K (i mod 8),

Isometric property. Since f is linear on the triangulation of the central square, checking
that it is an isometry reduces to check that the length of the edges of the triangulation
are preserved. In turn, using the rotational symmetry of order four of the construction, it
is enough to check that f preserves the length of the following edges: Q0Q3, S0P0, P0P7,
P7S3, Q0P0, Q3P7, OQ0, Q0S0, Q0P7. From Figure 52, it is seen that the horizontal and
the vertical edges have the same length a, that |OQ0| = a√

2 , and that the diagonal edges
S0Q0 and Q0P7 have length

√
2a. As Q′

3 = σxz(Q′
0) and P ′

7 = σxz(P ′
0) we then verify using

the point coordinates in (C) that:

• Q′
0Q

′
3, S

′
0P

′
0, P

′
0P

′
7, Q

′
0P

′
0, Q

′
3P

′
7 and S ′

3P
′
7 have lenght a,

117



Figure 69: Our construction that interpolates the initial isosceles triangle, and the
equilateral one. Observe that the two triangular boundaries are not parallel.
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Figure 70: Modified construction for the triangular boundaries to be parallel.

• the image O′Q′
0 of the semi-diagonal OQ0 has length a√

2 ,

• and the images S ′
0Q

′
0 and Q′

0P
′
7 of the diagonals have length

√
2a.

It follows that f preserves the required edge lengths.

Embedding property. We now verify that f is an embedding. For further reference,
we denote the central sphere by Sc. We first use the rotational symmetry to restrict the
verification to the dihedral sector, call it D, intersection of the two half-spaces x ≥ y
and x ≥ −y. From the point coordinates given by (C) and the fact that P ′

7 = σxz(P ′
0),

we readily check that S ′
0, O

′, Q′
0, Q

′
3, P

′
0 and P ′

7 are in D. By convexity, we deduce that
D contains the triangles of the image f(Sc) of the central sphere induced by these
vertices. Namely, D contains the triangles O′Q′

0Q
′
3, Q

′
0P

′
0P

′
7, Q

′
0P

′
7Q

′
3, Q

′
0S

′
0P

′
0 and Q′

3P
′
7S

′
0.

We observe that the iterated images by r of the corresponding set of source triangles
T0 := {OQ0Q3, Q0P0P7, Q0P7Q3, Q0S0P0, Q3P7S3} cover the whole set of triangles of Sc.
By the symmetry of our construction, it follows that f(ri(T0)) is included in ρi(D). Hence,
to show that f is an embedding, it is enough to show that the restriction of f to T0 is
an embedding and that f(T0) ∩ {x = y} is a set of edges such that f(T0) ∩ {x = y} =
ρ (f(T0) ∩ {x = −y}).

Only S ′
0, O

′, P ′
0 belong to {x = y} among the vertices of f(T ). Since OS0 is not an edge

of Sc, in particular S0OP0 is not a triangle of Sc, we have that f(T ) ∩ {x = y} is reduced
to the edges O′P ′

0 and P ′
0S

′
0. We similarly check that f(T ) ∩ {x = −y} = O′Q′

3 ∪ Q′
3S

′
0.

In particular, f(T ) ∩ {x = y} = ρ (f(T ) ∩ {x = −y}) as desired.
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We notice that P ′
7Q

′
3 = σxz(Q′

0P
′
0), so that the four vertices are coplanar and form

a parallelogram isometric to Q0P0P7Q3. Hence T0 decomposes into a set of four faces
Φ = {OQ0Q3, Q0S0P0, Q3P7S3, Q0P0P7Q3}.

It remains to ensure that the restriction of f to Φ is an embedding. It is enough to
exhibit a separating plane for the images of every pair of faces of Φ. Here, by a separating
plane of two faces ϕ1, ϕ2, we mean a plane Π such that Π ∩ ϕ1 is either empty or a
common edge or vertex of ϕ1 and ϕ2, and that ϕ2 is contained in the closed half-space
bounded by Π that does not contain ϕ1. We thus allow ϕ2 to be entirely contained in Π.
We now proceed to the verification that the faces of f(Φ) are pairwise separated in the
above sense.

• The plane Π0 :=
{
z = −

√
3
2a
}

separates O′Q′
0Q

′
3 from the other faces Q′

0P
′
0P

′
7Q

′
3,

Q′
0S

′
0P

′
0 and Q′

3S
′
0P

′
7. Indeed, from the coordinates of the points, we check that

O′, Q′
0 and Q′

3 belong to Π0, while P ′
0, P

′
7, and S ′

0 are located in the same open
half-space

{
z > −

√
3
2a
}

bounded by Π0. Moreover, the intersection of the face
Q′

0P
′
0P

′
7Q

′
3 with Π0 is the edge Q′

0Q
′
3 of O′Q′

0Q
′
3, while the intersection of Π0 with

Q′
0S

′
0P

′
0 and Q′

3S
′
0P

′
7 is a vertex, respectively Q′

0 and Q′
3, that is also a vertex of

O′Q′
0Q

′
3.

• Let

ℓ1(x, y, z) = −

√3
2 + sin θ0

x+
(
sin θ0 +

√
6 cos θ0 cosφ0

)
y+
(

cos θ0 cosφ0 − 1
2

)
z.

The plane Π1 := {ℓ1(x, y, z) = 0} separates Q′
0P

′
0S

′
0 from the faces Q′

0P
′
0P

′
7Q

′
3

and Q′
3P

′
7S

′
0. Indeed, we have Q′

0, P
′
0, S

′
0 ∈ Π1, while ℓ1(Q′

3) < 0 and ℓ1(P ′
7) < 0.

Moreover, the intersection of Π1 and Q′
0P

′
0P

′
7Q

′
3 is the edge Q′

0P
′
0 common to Q′

0P
′
0S

′
0

and the intersection of Π1 with Q′
3P

′
7S

′
0 is the vertex S ′

0 shared with Q′
0P

′
0S

′
0.

• Let

ℓ2(x, y, z) =
√3

2 + sin θ0

x+
(
sin θ0 +

√
6 cos θ0 cosφ0

)
y+
(

− cos θ0 cosφ0 + 1
2

)
z.

The plane Π2 := {ℓ2(x, y, z) = 0} separates Q′
0P

′
0P

′
7Q

′
3 and Q′

3P
′
7S

′
0. Indeed,

Q′
3, P

′
7, S

′
0 ∈ Π2, while ℓ2(Q′

0) < 0 and ℓ2(P ′
0) < 0. Moreover, Π2 ∩Q′

3P
′
7S

′
0 = Q′

3P
′
7

is an edge of Q′
3P

′
7S

′
0.

We have thus proved that every pair of faces in Φ is separated, allowing us to conclude
that f is an embedding.

6.5.2 Rectangular case where τ <
√

3
Arguments similar to those for the square case show that the PL realization described in
Section 6.2.2 is isometric. Since our construction has a symmetry by rotation of angle
π about the z axis, we only need to prove the existence of a separating plane for the
images of each pair of faces in the triangular region S1S3S0. The details of the proof
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Figure 71: Realization of the black central rectangle with τ <
√

3. In this case, the
half-prisms P12,P56 (in blue) and P34,P70 (in green) generated by the four triangular
boundaries do not intersect except at the image of the singularity, and only intersect the
central sphere Sc at their common boundary.

are provided in Appendix B. Hence, in all case, the central sphere corresponding to the
central rectangle is isometrically embedded.

It remains to show that, in the case τ <
√

3, it is possible to glue the peripheral
parallelograms without creating intersection. The following discussion is devoted to show
this fact, summarizing in Proposition 14.

Proposition 14. Let τ <
√

3. Then every translation surface Σ in H(2), admitting
a L decomposition with a central rectangle of aspect ratio τ and long enough peripheral
parallelogram, has a PL isometric embedding in R3. Moreover, one can fix a triangulation
of the underlying genus 2 topological surface S2 that realizes all such surfaces.

The central sphere Sc is bounded by its four boundary triangles ∂S ′
0P

′
1P

′
2, ∂S ′

0P
′
3P

′
4,

∂S ′
0P

′
5P

′
6, and ∂S ′

0P
′
7P

′
0. We consider each of these triangles as the initial cross-section of

respective (semi-infinite) right prisms P12,P34,P56 and P70. We assume that the prisms
extend infinitely from their initial cross-section in the direction opposite to the central
sphere. We want to show that the central sphere and the four prisms only intersect at
their common boundary points. Thanks to the symmetry of our construction it is enough
to check that (see Figure 71)

1. Sc and P70 intersect along their common boundary ∂S ′
0P

′
7P

′
0,

2. Sc and P12 intersect along their common boundary ∂S ′
0P

′
1P

′
2,

3. The intersections P12 ∩ P56, P34 ∩ P70 and P12 ∩ P70 are each reduced to the point
S ′

0.

Hence, it becomes possible to cut, bend and join P12 and P56 away from Sc and from the
two other prisms to form one of the peripheral cylinders, and similarly for P34 and P70.
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1. Sc and P70 intersect along their common boundary ∂S ′
0P

′
7P

′
0. It is enough to

show that the plane (S ′
0P

′
7P

′
0) separates Sc from the interior of P70 with (S ′

0P
′
7P

′
0) ∩ Sc =

(S ′
0P

′
7P

′
0) ∩ P70 = ∂S ′

0P
′
7P

′
0. An equation for (S ′

0P
′
7P

′
0) is given by ℓ3(x, y, z) = 0 with

ℓ3(x, y, z) = 2x sin θ0 − z
√

3 − 4 sin2 θ0.

We just need to check that all the vertices of Sc, except S ′
0, P

′
7 and P ′

0, strictly lie on the same
side of (S ′

0P
′
7P

′
0) since, by definition, P70 lies on the other side of this plane. We actually

prove that for 1 ≤ τ <
√

3 we have ℓ3(X) > 0 forX ∈ {P ′
1, P

′
2, P

′
3, P

′
4, P

′
5, P

′
6, Q

′
0, Q

′
1, Q

′
2, Q

′
3}.

• Proof that ℓ3(X) > 0 for X ∈ {Q′
0, Q

′
1, Q

′
2, Q

′
3}. We have from Section 6.2.2:

Q′
0 = b

2(τ, 1,−
√

3(1 + τ 2)) Q′
1 = b

2(−τ, 1,−
√

3(1 + τ 2))

Q′
2 = b

2(−τ,−1,−
√

3(1 + τ 2)) Q′
3 = b

2(τ,−1,−
√

3(1 + τ 2))

Using (6.6), we compute

ℓ3(Q′
0)ℓ3(Q′

2) = b2
(

3(1 + τ 2)(3
4 − sin2 θ0) − τ 2 sin2 θ0

)
= 3b2 2τ 4 + 3τ 2(1 +

√
1 + τ 2)

3 + 4τ 2

It immediately follows that ℓ3(Q′
0)ℓ3(Q′

2) is strictly positive for any τ > 0. We infer
that ℓ3(Q′

0) + ℓ3(Q′
2) = b

√
3(1 + τ 2)(3 − 4 sin2 θ0) has the same sign as ℓ3(Q′

0) and
ℓ3(Q′

2), implying that this sign is positive.
Now, we have ℓ3(Q′

3) = ℓ3(Q′
2) and ℓ3(Q′

1) = ℓ3(Q′
0), so that ℓ3(Q′

i) is positive for
i = 0, 1, 2, 3.

• Proof that ℓ3(X) > 0 for X ∈ {P ′
3, P

′
4}. Recall from (6.8) and (6.9) that

P ′
3 = b

(
− cos θ0 cosφ0,

1
2 , sin θ0

)
and P ′

4 = b
(

− cos θ0 cosφ0,−
1
2 , sin θ0

)
.

By (6.3), it is easily seen that

cos θ0 cosφ0 = 1
2

√
3 − 4 sin2 θ0. (6.19)

We thus compute ℓ3(P ′
3) = ℓ3(P ′

4) = −2b sin θ0

√
3 − 4 sin2 θ0. Since sin θ0 is negative,

we immediately infer that ℓ3(P ′
2) is positive.

• Proof that ℓ3(X) > 0 for X ∈ {P ′
1, P

′
6}. We first claim that 0 > sin θ0 > sin θ1 for

τ > 1. From (6.6) and (6.7) this is equivalent to

(2τ 2 − 3
√

1 + τ 2)(4 + 3τ 2) > (2 − 3τ
√

1 + τ 2)(3 + 4τ 2).

After expanding and regrouping this is equivalent to

6(τ 4 − 1) > 3
√

1 + τ 2(4 − 3τ + 3τ 2 − 4τ 3).
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The last inequality is trivially true since the left hand side is positive while the right
hand side is negative as can be seen by factoring 4−3τ+3τ 2−4τ 3 = (1−τ)(4τ 2+τ+4).
This proves the claim. Now, recalling from Section 6.2.2 that

P ′
1 = a

(1
2 , cos θ1 cosφ1, sin θ1

)
and P ′

6 = a
(1

2 ,− cos θ1 cosφ1, sin θ1

)
,

we compute ℓ3(P ′
1) = ℓ3(P ′

6) = a(sin θ0 − sin θ1

√
3 − 4 sin2 θ0). By the above claim,

this is larger than a sin θ0(1 −
√

3 − 4 sin2 θ0). Dividing Equation (6.4) by b, we
obtain

3
2 +

√
3(1 + τ 2) sin θ0 − τ

2

√
3 − 4 sin2 θ0 = 0. (6.20)

Together with (6.6), we deduce

1
2

√
3 − 4 sin2 θ0 = 3

2τ
1 + 2

√
1 + τ 2

3 + 4τ 2 . (6.21)

It easily follows that
√

3 − 4 sin2 θ0 > 1 for any τ ≥ 1. We deduce that
sin θ0(1 −

√
3 − 4 sin2 θ0) is positive, and in turn ℓ3(P ′

1) and ℓ3(P ′
6) are positive.

• Proof that ℓ3(X) > 0 for X ∈ {P ′
2, P

′
5}. From (6.11) and (6.12):

P ′
2 = a

(
−1

2 , cos θ1 cosφ1, sin θ1

)
and P ′

5 = a
(

−1
2 ,− cos θ1 cosφ1, sin θ1

)
.

Since the first and third coordinates of P ′
2 and of P ′

5 are negative, and since their
multiplicative coefficients in ℓ3 are also negative it ensues that ℓ3(P ′

2) and ℓ3(P ′
5) are

positive.

2. Sc and P12 intersect along their common boundary ∂S ′
0P

′
1P

′
2. As opposed to

(S ′
0P

′
7P

′
0), the plane (S ′

0P
′
1P

′
2) is not a supporting plane of Sc for some 1 ≤ τ <

√
3. It is

however a supporting plane of P12, as are the planes (S ′
0Q

′
0P

′
1) and (S ′

0P
′
2Q

′
1). We thus

show that each face of Sc is separated from (the relative interior of) P12 by one of these
planes and intersects this separating plane along a possibly void subset of ∂S ′

0P
′
1P

′
2. By

the symmetry of our construction with respect to the yz-plane, it is enough to prove
that the triangles S ′

0Q
′
0P

′
0, S ′

0P
′
7Q

′
3, S ′

0Q
′
3P

′
6, S ′

0P
′
5Q

′
2 and the quadrangles P ′

0Q
′
0Q

′
3P

′
7

and P ′
6Q

′
3Q

′
2P

′
5 are separated from P12 by either (S ′

0P
′
1P

′
2) or (S ′

0Q
′
0P

′
1), and that the

intersections of these faces with their separating plane is contained in ∂S ′
0P

′
1P

′
2. Let ℓ4 = 0

and ℓ5 = 0 be respective equations for the planes (S ′
0P

′
1P

′
2) and (S ′

0Q
′
0P

′
1), such that P12

lies in {ℓ4 ≤ 0} ∩ {ℓ5 ≤ 0}. The required separation conditions now reduce to

1. ℓ4(X) > 0 for X ∈ {Q′
0, Q

′
1, Q

′
2, Q

′
3, P

′
5, P

′
6},

2. ℓ5(X) > 0 for X ∈ {Q′
3, P

′
0, P

′
7}

We easily compute an equation for (S ′
0P

′
1P

′
2):

ℓ4(x, y, z) = 2y sin θ1 − z
√

3 − 4 sin2 θ1
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and an equation for (S ′
0Q

′
0P

′
1): ℓ5(x, y, z) = c′

xx+ c′
yy + c′

zz, with

c′
x =

√
3

c′
y = −τ sin θ1 −

√
3(1 + τ 2)

2 = −
√

3τ + 2
√

1 + τ 2

4 + 3τ 2

c′
z =

τ
√

3 − 4 sin2 θ1 − 1
2 = 3τ

√
1 + τ 2 − 2

4 + 3τ 2

• Since P ′
1Q

′
0 and P ′

2Q
′
1 are orthogonal to the plane (S ′

0P
′
1P

′
2), we easily infer

ℓ4(Q′
1) = ℓ4(Q′

0) =
√

3|P ′
1Q

′
0| =

√
3|P ′

2Q
′
1| = b

√
3 > 0.

• ℓ4(Q′
3) = ℓ4(Q′

2) = b
2(
√

3(1 + τ 2)
√

3 − 4 sin2 θ1 − 2 sin θ1). This quantity is positive
since sin θ1 is negative for 1 ≤ τ <

√
3.

• From (6.3) we get cos θ1 cosφ1 = 1
2

√
3 − 4 sin2 θ1. Using this equality to express the

coordinates of P ′
5 and P ′

6, we compute
ℓ4(P ′

5) = ℓ4(P ′
6) = −2a sin θ1

√
3 − 4 sin2 θ1. This is again positive for the same

reason as above.

Concerning the plane (S ′
0Q

′
0P

′
1), we compute

• ℓ5(Q′
3) = b

√
3τ + 2

√
τ 2 + 1

3τ 2 + 4 . This is clearly positive for τ ≥ 1.

• ℓ5(P ′
0) =

√
3b
2

q0(τ)
(3 + 4τ 2)(4 + 3τ 2) where, using that 1 ≤ τ 2 < 3,

q0(τ) = 4τ
(
2
√

1 + τ 2
(
3τ 2 − τ + 3

)
− τ (1 + τ)

)
> 4τ

(
2
√

2(6 −
√

3) −
√

3(1 +
√

3)
)
> 0

• Finally, we have ℓ5(P ′
0) − ℓ5(P ′

7) = bc′
y. Since c′

y is negative, it follows that ℓ5(P ′
7) =

ℓ5(P ′
0) − bc′

y > ℓ5(P ′
0) > 0.

3. The right prisms pairwise intersect at S ′
0 only. Thanks to the symmetry of

the construction with respect to the xz-plane and yz-plane we only need to check that
P12 ∩ P56, P34 ∩ P70 and P12 ∩ P70 are each reduced to the point S ′

0.

• To see that P12 ∩ P56 = {S ′
0}, it is enough to exhibit a separating plane Π so that

– the initial cross-sections S ′
0P

′
1P

′
2 and S ′

0P
′
5P

′
6 of respectively P12 and P56 are

contained in the (open) opposite half-spaces bounded by Π, except for their
common vertex S ′

0 contained in Π,
– the normals to the initial cross-sections, in the direction opposite to Sc, are

contained in the vectorial counterpart of the corresponding opposite half-spaces.
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These conditions are easily satisfied by taking for Π the xz-plane.

• An analogous verification applies to P34 ∩ P70 using the yz-plane for Π.

• For the last case concerning P12 ∩ P70 we set Π = (S ′
0Q

′
0P

′
1). Its equation is

given by ℓ5 = 0. We already checked that ℓ5(P ′
0) and ℓ5(P ′

7) are positive. Let
n70 = 1

b
S ′

0P
′
7 ∧ S ′

0P
′
0 = (− sin θ0, 0, cos θ0 cosφ0) be a normal to (S ′

0P
′
7P

′
0) directed

outside Sc. We compute

ℓ5(n70) = − sin θ0
√

3 + cos θ0 cosφ0
3τ

√
1 + τ 2 − 2

4 + 3τ 2 .

Using (6.6), (6.19) and (6.21), we obtain

ℓ5(n70) = −3
2

2τ 2 − 3
√

1 + τ 2

3 + 4τ 2 + 3
2τ

1 + 2
√

1 + τ 2

3 + 4τ 2
3τ

√
1 + τ 2 − 2

4 + 3τ 2

= 3
2

(3
√

1 + τ 2 − 2τ 2)(4 + 3τ 2) + τ(1 + 2
√

1 + τ 2)(3τ
√

1 + τ 2 − 2)
(3 + 4τ 2)(4 + 3τ 2)

= 32
√

1 + τ 2(3τ 2 − τ + 3) − τ 2 − τ

(3 + 4τ 2)(4 + 3τ 2)

> 32τ(3τ 2 − τ + 3) − τ 2 − τ

(3 + 4τ 2)(4 + 3τ 2) = 3 τ(6τ 2 − 3τ + 5)
(3 + 4τ 2)(4 + 3τ 2) > 0

It ensues that P70 \ {S ′
0} is contained in the half-space {ℓ5 > 0}.

We now check that P12 is contained in the closed half-plane {ℓ5 ≤ 0}. This will
allow us to conclude that P12 and P70 indeed intersect at S ′

0 only. First note that
ℓ5(P ′

1) = 0 since P ′
1 ∈ Π. Next, we have

ℓ5(P ′
2) = a

(
−1

2c
′
x − cos θ1 cosφ1c

′
y + sin θ1c

′
z

)
.

Since c′
x and c′

z are positive, while cy is negative, we immediately infer that ℓ5(P ′
2) is

negative. The triangle S ′
0P

′
1P

′
2 thus satisfies ℓ5 ≤ 0. Finally, since S ′

0P
′
1P

′
2 is normal

to the plane (S ′
0Q

′
0P

′
1), the prism P12 is indeed contained in {ℓ5 ≤ 0}.

6.6 The Nguyen’s moves on L decompositions
In [Ngu14], Nguyen exhibits a group Γ that acts on L decompositions of surfaces of H(2)
with the property that the L decompositions in a same Γ orbit correspond to a same flat
surface. Γ is generated by three elements T, S,R. They correspond to gluing and pasting
of the initial L decomposition.

Let (Σ,ω) be a flat surface of genus 2 with one singularity, and denote by S2 the
underlying topological surface. Fix a basis B = (α1, α2, α3, α4) of π1(S2), and denote
ΦB(ω) = (z1, z2, z3, z4) the periods of ω on the basis B as in Section 2.7.2.

First we have to make precise the notion of L decomposition. Let z1, z2, z3, z4 denote
four complex numbers such that the ”cross products” ℑ(z̄1z2),ℑ(z̄2z3),ℑ(z̄3z4) are strictly
positive. In particular, the parallelograms Conv(0, z1, z2, z1 + z2),Conv(0, z2, z3, z2 +
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z1

z2

z3

z4

Figure 72: L shape pattern L(z1, z2, z3, z4) associated to four complex numbers z1, z2, z3, z4
defining three non degenerated non overlapping parallelograms. The gluing of this polygon
along parallel edges results in a surface in H(2).

z3),Conv(0, z3, z4, z3 + z4) are non degenerate. Gluing the sides corresponding to z2 and
z3, one obtains a L shape denoted L(z1, z2, z3, z4). This L shape defines a flat surface of
genus 2 in H(2) by gluing its parallel sides - see Figure 72.

We now explain the T, S and R moves. T is defined by

T (L(z1, z2, z3, z4)) = L(z1, z2, z3, z3 + z4),

see Figure 73. While S is defined by

S(L(z1, z2, z3, z4)) = L(−z4, z3,−z2, z1),

see Figure 74. Finally,

R(L(z1, z2, z3, z4)) = L(z1,−z1 + z2 + z3, z3, z4)

which is only possible in certain cases, cf Figure 75. As we can obtain the images of
each move by cutting and pasting the initial L shape, they define indeed the same flat
surface. Let us look closer at the R move. This move is only possible if the segment
joining the extremities of z3 and z1 lies inside the L(z1, z2, z3, z4) for the cutting and
pasting to be feasible. The limit case of possible patterns is thus when the segment joining
these extremities passes through the extremity of z2, which corresponds to the case where
z1 − z3 is proportional to z2 − z3. The R move possible cases correspond then to the
situation where z1 − z3 points above the direction of z2 − z3 in Figure 72, or in short when
ℑ((z1 − z3)(z2 − z3)) ≥ 0. We claim that, given z1, z2, z3, z4, there always exists a L shape
pattern L that is < S, T >-equivalent to L(z1, z2, z3, z4) such that the R move is feasible on
L. Indeed, we compute (ST k)·L(z1, z2, z3, z4) = L(−z4−kz3, z3,−z2, z1) =: L(z′

1, z
′
2, z

′
3, z

′
4)

and we have ℑ((z′
1 − z′

3)(z′
2 − z′

3)) = (k + 1)ℑ(z̄2z3) − ℑ(z̄3z4) + ℑ(z̄4z2) which becomes
positive for all k great enough as ℑ(z̄2z3) > 0.

Nguyen showed that every two L decompositions of the same translation surface are
related by a move in Γ =< T, S,R >.

This moves permit to understand better the realization space for our constructions.
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Figure 73: The T move.

z1

z1
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−z2z3

z3
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−z4

Figure 74: The S move.
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z3

z4

z1

−z1 + z2 + z3

z3
z4

Figure 75: The R move.

127



central
parallelogram

central
parallelogram

peripheral parallelogram

peripheral parallelogram

Figure 76: Z decomposition of a surface in H(1, 1). Singularities are in red and purple.

6.7 The case of surfaces in H(1, 1)
We now give the ideas to adapt the previous method in the case of a surface in H(1, 1).

As we saw in Section 2.7.3, every surface in H(1, 1) can be obtained by gluing two slitted
flat tori as explained in Figure 15. We use a slightly different viewpoint. Refer to Figure 76.
Cutting out the two peripheral parallelograms from the surface, there remains the two
central parallelograms which form a topological sphere with four boundary components.
Based on our experience with surfaces of H(2), we can use a similar approach. First we
find a PL and isometric realization of this central sphere in R3, with equilateral triangular
boundaries. Then, we embed the two remaining peripheral parallelograms as part of bent
and twisted right prism in order to glue them on the boundaries of the sphere.

We only sketch of the construction.
Consider the triangulation of the two central parallelograms depicted in Figure 77,

and we refer to this Figure 77 for the naming of the vertices. We suppose the central
parallelogram to be rectangles. This triangulation can be realized in R3 the following
way, see Figure 78. Denote S1 and S2 the two singularities. We send S1 to the origin
Ω of R3. Note that, by adding the Qi’s, we obtain a prism with apex S1. Realize this
prism in the half-space {z ≥ 0} so that the axis Ωz is a symmetry axis, and denote θ
the angle between Ωz and ΩQ′

0, where Q′
0 is the image of Q0 in R3. We then send S2

at height a + 2a sin θ on the Ωz axis, and we build the symmetric construction for S2
and the Pi’s. It remains to paste the topological cylinder made by the Qi’s and Pi’s to
obtain an isometric realization of the two central parallelograms, which is an embedding.
Figure 79 shows an example.

Nevertheless, the central axis of the four triangular boundaries are directed so that
the four branches continuing the boundaries intersect pairwise as shown in Figure 79. In
order to avoid such intersections, we can apply gaskets on each branch. This way, we can
realize the two remaining peripheral parallelograms as shown in Figure 80 and Figure 81.
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S1 S2Q0

Q1

Q2

Q3

Q4

Q5

Q6

P0

P1

P2

P3

P4

P5

P6

Figure 77: Triangulation of the two central parallelograms that can be used to infer a
realization as a PL sphere with four triangular boundaries.
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0
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Figure 78: Scheme of our construction. S ′
1 ∗Q′

0Q
′
1Q

′
2Q

′
3Q

′
4Q

′
5 and S ′

2 ∗P ′
0P

′
1P

′
2P

′
3P

′
4P

′
5 form

symmetric conical prisms. The Q′
i and P ′

j make a right prism.
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Figure 79: Our isometric embedding (in blue) of the two central rectangles of a surface in
H(1, 1). Here, the red orthogonal continuation of the four boundaries intersect. Gaskets
can be made to avoid them.
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Figure 80: Gaskets are applied on the construction to avoid intersections on the four
branches.
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Figure 81: The final isometric embedding of a surface in H(1, 1).
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Conclusion

We showed three results in this thesis. To conclude, we recall the description of each one,
and we indicate open questions related to it if any.

Effective implementation of the method of Burago and
Zalgaller
Though the procedure of Burago and Zalgaller allows to embed PL isometrically any
polyhedral surface, it relies on the non constructive Nash-Kuiper process. Nonetheless, in
the case of flat tori, the different steps of the method of Burago and Zalgaller described in
3.2 greatly simplify. Indeed, as flat tori present no singularity, we can take U = U>2π = ∅
in 3.2. Next, one can compute easily an acute triangulation of a flat torus, and even an
almost equilateral one. Then, by the articles [Pin85] and [Ban88], one can find conformal
embeddings of a given flat torus. It remains to apply the elementary construction described
in the first paragraph of Section 3.2 to obtain the desired PL isometric embedding.

Universal triangulation for flat tori
In order to obtain some uniformity in the previous realizations, we asked if it is possible to
realize all flat tori with a bounded number of vertices. As, for N ∈ N, there are only finitely
many combinatorial triangulation of the torus with at most N vertices, the existence of
such realizations amounts to the existence of a fixed combinatorial triangulation T that is
universal. In turn, a universal triangulation T for the moduli space M1 of flat tori is
a combinatorial triangulation of the torus, which admits for each τ ∈ M1 a geometric
realization that is isometric to Tτ and that is linear in restriction to each triangle of T .

We give a constructive proof for the existence of a universal triangulation of flat tori.
We chose to rely on two constructions. The first one is a construction due to Zalgaller
that allows to realize all long enough flat torus. By a precise study of the construction,
we were able to conclude that all modulus with imaginary part greater or equal to 33 is
realizable thanks to this construction. It remained to find models for the complementary
of such flat tori in M1, call it the family of short flat tori. We then rely on the diplotori
of Arnoux, Lelièvre and Málaga. We exhibit 3 families of diplotori that cover the family
of short flat tori, that we superimpose to obtain a universal triangulation for short tori.
The merging of the two previous triangulations gives the desired universal triangulation
for M1.
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Some problems naturally occur with the existence of such a universal triangulation for
flat tori.

The first one, the most natural, is the size - in terms of vertices - of a minimal universal
triangulation for M1. By Theorem 5, it is less or equal to 2434. To our knowledge, the
only lower bound is 7 and comes from the fact that it is the size of a minimal simplicial
triangulation of the torus. There exists PL (not necessarily isometric) embeddings realizing
this triangulation, such as the Császár torus, which were studied by Bokowski and Eggert.
Again, to our knowledge, it is not even known what is the minimal number of vertices
that realize a fixed torus.

Another open problem is about the connectedness of the realization space for our
universal triangulation T . We know that individually, every flat torus of modulus τ can
be realized by T , thanks to a PL isometric embedding fτ linear on each triangle of T .
But, given τ, τ ′ ∈ M1, is it possible to continuously deform fτ so as to obtain fτ ′ and
staying a PL isometric embedding during the process? More formally, is there an isotopoy
H such that H(0, ·) = fτ , H(1, ·) = fτ ′ and H(t, ·) is a PL isometric embedding for all t.
The answer seems to be yes for ℑτ,ℑτ ′ ≥ 33, as Zalgaller’s construction seems to allow
for such a modularity. Indeed, if a long modulus is given, it suffices to decrease the angle
made by the helical twist in order to reach the null angle. That gives a continuous path
from any long modulus to some right modulus. It is now easy to reach any modulus by
varying the length of the sides of Zalgaller’s construction. However, for a long modulus τ
and a short modulus τ ′, the answer is far less clear. It is even not clear if, for two short
moduli τ, τ ′ realized by two distinct families of diplotori, fτ and f ′

τ can be connected.
Finally, the last and most interesting question which is linked with our last result, is to
know if the existence of universal triangulations can be extended to other moduli spaces.
This is the object of the second ”part” of this thesis.

PL isometric embeddings of some surfaces in H(2) and
H(1, 1)
Comforted by our result in genus 1, we investigated the genus 2 case. We focused on the
moduli space H2 of translation surfaces of genus 2. It decomposes into two strata H(2)
and H(1, 1). We gave models, i.e. PL realizations, for subsets of both H(2) and H(1, 1),
with details of the fact that they realize isometric embeddings in the case of the subset of
H(2). Although our constructions do not realize the entire stratum H(2) (nor H(1, 1)),
they realize, for h > 0 big enough, an open neighborhood of the family Lrect

≥h of translation
surfaces in H(2) that admits an L decomposition with a rectangular central parallelogram
and peripheral parallelograms with relative height greater or equal to h. Our models are
relatively easy to understand. We first realize the central parallelogram as a PL sphere
with four triangular boundaries. Next, we glue the peripheral parallelograms as part
of bent and twisted right prisms. We actually propose two realizations of the central
parallelogram: the first one leads to equilateral boundaries while the second only provides
isosceles boundaries. In the former case, we saw that, doing this way, it is possible to
realize elements of Lrect whose central rectangle has aspect ratio τ <

√
3 and long enough

peripheral parallelograms. When τ ≥
√

3, we also show how to realize the corresponding
surface of Lrect by introducing bending possibly with negative angle. In the other case
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of central parallelogram with isosceles boundaries, we introduced a simple construction
that allows to interpolate from an isosceles to an equilateral boundary, leading to other
realizations of elements of Lrect. In order to circumvent this rigidity, we introduce modular
models, at the cost of relaxing the equilateral property of the boundaries while keeping
isosceles triangular boundaries.

We have also shown how to deform our constructions of the central spheres to realize
skew parallelograms. In the end, we are able to exhibit a single model that allows to
realize a reasonably ”large” open subset of H(2).

However, the existence of a universal triangulation for H(2) (or H(1, 1)) still remains
open. In particular one should find models to realize surfaces in H(2) with one (or both) of
the peripheral parallelograms arbitrarily short. Note that our approach does not seem to
adapt in this case. Indeed, it is always possible to realize the central parallelogram if this
latter is close to be right. However, to realize the remaining two peripheral parallelograms,
as soon as they are not right, a twist has to be applied in order to shift the boundary of the
cylinder before gluing. This twist, as we saw in Section 5.1, requires enough ”material” to
be realized. This fact - among others - prevent us to realize, with our method, surfaces with
too short peripheral parallelograms. To go further, recall though that it is only sufficient to
find models that covers a subdomain R of H(2) whose complementary region is compact.
According to Mumford’s compactness criterion, it is thus enough for this complementary
region that the saddle connections, corresponding to some period coordinates, have upper
and lower bounded lengths. Indeed, the constructions in the theorem of PL isometric
embedding Burago and Zalgaller allows for some flexibility for H(2). Hence we can
cover the compact complementary region of R by open subsets, each realized by a fixed
triangulation. By compactness, we can select a finite number of such open sets to cover
the complementary region. Overlaying all these triangulations, and the one for R, would
thus result in a universal triangulation for H(2).

One approach to build a universal triangulation for R, is to rely on some compactifi-
cation of H(2) in order to identify ”directions” to infinity and, for each of them, to find
a single model that realizes it. There are several compactification candidates, such as
the Deligne-Mumford compactification, or the more recent WYSIWYG compactification,
the Incidence Variety compactification, and the Multi-scale differentials compactification.
Identifying a good candidate that leads to a convenient stratification of the boundary of
H(2) so as to structure our efforts seems to be a prerequisite. Up to now, only the case
when the sides of the central parallelogram become smaller and smaller, corresponding
to longer and longer peripheral parallelograms, has been achieved. A challenging task
would be to find models for the case where the sides of the central rectangle remain
large, but the peripheral parallelograms become shorter and shorter. To do so, a very
useful problem related to this thesis is the problem of PL isometric embedding with given
boundary. Given a polyhedral surface Σ with boundary, and a PL isometric embedding
∂f : ∂Σ → R3 of the boundary of Σ in R3, can ∂f be extended to the entire Σ into a
PL isometric embedding f : Σ → R3? It is a difficult question which could help in the
construction of polyhedral models for large family of surfaces and in particular surfaces in
H(2).

Moreover, obvious generalizations to other strata and genera appear. Such a program,
started from a combinatorial problem: to know if an entire moduli space can be realized
by a fixed triangulation, and appeared to have deep connection with complex geometry
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and analysis that we studied in this document. However, the links with algebraic geometry
and dynamics was not fully considered and it would be very interesting to see if some
progress can be achieved with such viewpoints.
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Appendix A

Proof of Lemma 11

Here, we provide the details for the proof of Lemma 11. From Theorem 10, simple
computations show that the region M19,2 is bounded by the following parametrized
curves:

− λ2(t) = z2 + it with t ∈ [0,+∞[ and z2 = 2−sin 2π
19 cot π

19 +i sin 2π
19

19 ,

− β2,1(t) = 2
19 − sin 2π

19
19 sin π

19
e−it with t ∈ [ π19 ,

3π
19 ],

− β2,2(t) = 2+i cot π
19

19 − ei 15π
38

19 sin π
19
t with t ∈ [cos 16π

19 , cos 3π
19 ],

− ρ2(t) = w2 + it with t ∈ [0,+∞[ and w2 = β2,2
(
cos 16π

19

)
.

While M19,7 is bounded by:

− λ7(t) = z7 + it with t ∈ [0,+∞[ and z7 = 7−sin 7π
19 cot π

19 +i cot π
19(1−cos 7π

19 )
19 ,

− β7,1(t) = 7+i cot π
19

19 − ei 5π
38

19 sin π
19
t with t ∈ [cos 6π

19 , cos π
19 ],

− β7,2(t) = 7
19 − sin 7π

19
19 sin π

19
e−it with t ∈ [6π

19 ,
8π
19 ],

− β7,3(t) = 7+i cot π
19

19 − ei 5π
38

19 sin π
19
t with t ∈ [cos 11π

19 , cos 8π
19 ],

− ρ7(t) = w7 + it with t ∈ [0,+∞[ and w7 = β7,3
(
cos 11π

19

)
.

And M19,13 is bounded by:

− λ13(t) = z13 + it with t ∈ [0,+∞[ and z13 = 13−sin 13π
19 cot π

19 +i cot π
19(1−cos 13π

19 )
19 ,

− β13,1(t) = 13+i cot π
19

19 − e−i 7π
38

19 sin π
19
t with t ∈ [cos 5π

19 , cos π
19 ],

− ρ13(t) = w13 + it with t ∈ [0,+∞[ and w13 = β13,1
(
cos 5π

19

)
.
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z2

A1 A2

A3A4

P2(t)
β2,1(t)

Figure 82: The red quadrilateral A1A2A3A4.

In the sequel we denote by B(z, r) the closed disk of radius r centered at z and by
C(z, r) its boundary circle. Recall that each gδ : z 7→ 1

−z+δ sends the horizontal line
{ℑ(z) = h} onto the circle C

(
i

2h ,
1

2h

)
. Furthermore, for δ ≥ 1, gδ sends the imaginary

axis onto the circle C
(

1
2δ ,

1
2δ

)
, and the line {ℜ(z) = 1

2} onto the circle C
(

1
2δ−1 ,

1
2δ−1

)
. We

denote the red, blue and yellow slices of M+
short on Figure 46 by respectively Sr,Sb and

Sy.
From these facts, we deduce that g5(Sr), the image of the red slice by g5 (see Figure 47),

is bounded by four arcs of circles; one form respectively C
(

1
9 ,

1
9

)
, C
(
i

66 ,
1
66

)
, C
(

1
10 ,

1
10

)
and C

(
i

50 ,
1
50

)
. Similarly, the image g3(Sb) of the blue slice is bounded by arcs from the

circles C
(

1
5 ,

1
5

)
, C
(
i

50 ,
1
50

)
, C
(

1
6 ,

1
6

)
and C

(
i

24 ,
1
24

)
. Finally, the image g1(Sy) of the yellow

slice is bounded by arcs of the circles C(1, 1), C
(
i

24 ,
1
24

)
, C
(

1
2 ,

1
2

)
and a segment of the line

{ℜ(z) = 1
2}. For this last slice, we note that g1 sends the arc of circle {eit | π

3 ≤ t ≤ π
2 } to

the vertical line segment {1
2 + it | t ∈ [1

2 ,
√

3
2 ]}.

We now proceed to prove that the three curvilinear quadrilaterals g5(Sr), g3(Sb) and
g1(Sy) shown in Figure 47 lie above the lower boundary of M19 := M19,2 ∪ M19,7 ∪ M19,13
- a point lie above another point w with same real part if ℑ(z) ≥ ℑ(w). Let us remark
that for showing that such a quadrilateral lies above some boundary, it suffices to show
that the bottom side and the right most side of the quadrilateral lie above this boundary
as the quadrilateral is completely included in the region of the plane above these two
sides.

The red quadrilateral g5(Sr) Denote the vertices of this quadrilateral as in Figure 82.
From the above description, one computes A1 = 6+44i

1479 , A2 = 5+33i
1114 , A3 = 1+5i

130 , A4 = 18+100i
2581 .

By the previous remark, it is enough to show that the curvilinear sides
⌢

A1A2 and
⌢

A2A3
lie above the lower boundary of M19.

− Arc
⌢

A1A2.
The vertical line through β2,1(t) cuts C

(
i

66 ,
1
66

)
(the circle containing

⌢

A1A2) in two
points. We denote by P1(t) the highest of this two points. Remark that

⌢

A1A2
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is indeed in the upper half part of C
(
i

66 ,
1
66

)
. We compute P1(t) = i+eiτ

66 with
0 ≤ τ ≤ π, where cos τ

66 = 2
9 − sin 2π

19
19 sin π

19
cos t. Thus:

ℑ(P1(t)) = 1 + sinτ

66 ≥ ℑ(β2,1(t)) =
sin 2π

19
19 sin π

19
sin t

⇐⇒ sin2 τ

662 ≥
(

− 1
66 +

sin 2π
19

19 sin π
19

sin t
)2

⇐⇒ f1(cos t) ≥ 0,
where

f1(x) := 8x
361 cos π19 + 2

√
1 − x2

627 cos π19 −
6 + 2 cos 2π

19
361 .

A study of f1 shows that it is non negative on [0.96, 1], so that f1(cos t) is non
negative for t ∈ [0, t1red := 0.283]. Note that 0 < π/19 < t1red < 3π/19. Moreover1,
ℜ(z2 = β2,1( π19)) ≈ 0.002 < ℜ(A1) = 6

1479 and ℜ(β2,1(t1red)) ≈ 0.0055 > ℜ(A2) = 5
1114 .

This shows that the arc
⌢

A1A2 entirely lies above β2,1.

− Arc
⌢

A2A3.
The vertical line through β2,1(t) cuts C

(
1
10 ,

1
10

)
(the circle containing

⌢

A2A3) in two
points. Denoting by P2(t) the highest of these two points, similar computations as
above lead to:

ℑ(P2(t)) ≥ ℑ(β2,1(t)) ⇐⇒ f2(cos t) := 1
1805

sin 2π
19

sin π
19

cos t+ 18
1805 −

sin2 2π
19

361 sin2 π
19

≥ 0.

Since f2 is non negative on [0.55, 1], we have that f2(cos t) is non negative for
t ∈ [0, 0.9]. Note that this interval contains the interval of definition [ π19 ,

3π
19 ] of

β2,1. Since ℜ(z2) < ℜ(A2) and ℜ(β2,1(3π
19 )) ≈ 0.014 > ℜ(A3) = 1

130 , the arc
⌢

A2A3 is
included in the region above β2,1. We thus conclude that A1A2A3A4 lies entirely
above β2,1.

The blue quadrilateral g3(Sb). Denote the vertices of this quadrilateral B1, B2, B3, B4
in analogy with what precedes (B1 is the bottom left vertex of the quadrilateral, B2
the bottom right one, B3 the top right one and B4 the top left one). We compute
B1 = 2+20i

505 , B2 = 3+25i
634 , B3 = 1+4i

51 , B4 = 10+48i
601 . Again, it is enough to show that the

curvilinear sides
⌢

B1B2 and
⌢

B2B3 lie above the lower boundary of M19.

− Arc
⌢

B1B2.
The vertical line passing by β2,1(t) cuts C

(
i

50 ,
1
50

)
(the circle containing

⌢

B1B2 in two
points. Let Q1(t) denotes the highest of this points. We have

ℑ(Q1(t)) ≥ ℑ(β2,1(t)) ⇐⇒

f3(cos t) :=
4 sin 2π

19
361 sin π

19
cos t+

sin 2π
19

475 sin π
19

√
1 − cos2 t− 4

361 −
sin2 2π

19
361 sin2 π

19
≥ 0.

1Here and in the sequel, we write x ≈ y, where y =
∑l

i=k di10i is a decimal with dk ̸= 0, to mean that
|x − y| < 10k.
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Furthermore, f3 is non negative on [0.94, 1], so that f3(cos t) is non negative on
[0, t1blue := 0.3]. Note that 0 < π/19 < 0.3 < 3π/19. Moreover, ℜ(z2) ≈ 0.002 <
ℜ(B1) = 2

505 and ℜ(β2,1(t1blue)) ≈ 0.008 > ℜ(B2) = 3
634 , which implies that

⌢

B1B2 lies
entirely above β2,1.

− Arc
⌢

B2B3. Denote by Q2(t) the highest intersection point of the vertical line passing
through β2,1(t) with C

(
1
6 ,

1
6

)
(the circle containing

⌢

B2B3). We have

ℑ(Q2(t)) ≥ ℑ(β2,1(t)) ⇐⇒ f4(cos t) := −
7 sin 2π

19
1083 sin π

19
cos t+ 26

1083 −
sin2 2π

19
361 sin2 π

19
≥ 0.

Since f4 is non negative on [−1, 1] and ℜ(z2) < ℜ(B2), it follows that
⌢

B2B3 is
above β2,1 over the interval [ℜ(B2),ℜ(β1,2(3π

19 ))]. Let β̄2,2 be the supporting line of
β2,2. The point of β̄2,2 on the same vertical as B2 is Q3 := β2,2

(
1211 sin π

19
634 cos 15π

38

)
, while

the point of β2,2 in the same vertical line as B3 is Q4 := β2,2

(
t2blue := 83 sin π

19
51 cos 15π

38

)
.

Observe that t2blue ∈ [cos 16π
19 , cos 3π

19 ]. We compute ℑ(Q3) ≈ 0.02 < ℑ(B2) = 25
634 and

ℑ(Q4) ≈ 0.06 < ℑ(B3) = 4
51 . By concavity of

⌢

B2B3, we deduce that
⌢

B2B3 lies above
β2,2 over [ℜ(β2,2(cos 3π

19 )),ℜ(B3)]. We conclude that
⌢

B2B3 lies above β2,1 ∪ β2,2.

The yellow quadrilateral g1(Sy). Denote the vertices of this quadrilateral analogously
to what precedes. One computes

C1 = 2 + 48i
577 , C2 = 1 + 12i

145 , C3 = 1 + i

2 , C4 = 1 +
√

3i
2 = ei

π
3 .

We show that the curvilinear sides
⌢

C1C2 and
⌢

C2C3 lie above the lower boundary of M19.

• Arc
⌢

C1C2. Let R1(t) be the highest intersection point of the vertical line through
β2,1(t) with C

(
i

24 ,
1
24

)
(the circle containing

⌢

C1C2). We have

ℑ(R1(t)) ≥ ℑ(β2,1(t)) ⇐⇒

f5(cos t) :=
8 cos π

19
361 cos t+

cos π
19

114
√

1 − cos2(t) −
6 + 2 cos 2π

19
361 ≥ 0.

Since f5 is non negative on [0.8, 1], it ensues that f5(cos t) is non negative for t
in [0, 0.6]. This interval contains [ π19 ,

3π
19 ]. As ℜ(z2) ≈ 0.002 < ℜ(C1) = 2

577 and
ℜ(β2,1(3π

19 )) ≈ 0.02 > ℜ(C2) = 1
145 , we conclude that

⌢

C1C2 lies entirely above β2,1.

• Arc
⌢

C2C3. First we note that if a point z with ℜ(C3) ≤ ℜ(z) ≤ 1
2 belongs to

B
(

1
2 ,

1
2

)
, then it lies below the arc

⌢

C2C3. Thus to show that βi,j(t) is below
⌢

C2C3 it
is sufficient to show that |βi,j(t) − 1

2 | ≤ 1
2 .

We have

|β1,2(t) − 1
2 | ≤ 1

2 ⇐⇒ f6(cos t) :=
15 sin 2π

19
361 sin π

19
cos t+

sin2 2π
19

361 sin2 π
19

− 34
361 ≥ 0.
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Since f6 is non positive on [−1, 1], it follows that f6(cos t) is always non positive.
Hence

⌢

C2C3 is above β2,1 over [ℜ(C2),ℜ(β2,1(3π
19 ))].

Next, we show that
⌢

C2C3 lies above β2,2 in the strip {z | ℜ(z) ∈ [ℜ(β2,1(3π
19 )),ℜ(z7)]}.

Let R2,7 be the point on β2,2 with real part ℜ(z7). We have

R2,7 = β2,2

(
τ2,7 :=

(−5 + cos 5π
38 cot π

19) sin π
19

sin 2π
19

)

and we verify that τ2,7 ∈ [cos 16π
19 , cos 3π

19 ] and ℑ(R2,7) ≈ 0.24 > ℑ(z7) ≈ 0.18. Then,
to show that

⌢

C2C3 lies above β2,2 in the above strip, it suffices by concavity of
B
(

1
2 ,

1
2

)
(as β2,2 is a line segment) to show that β2,2(cos 3π

19 ), R2,7 ∈ B
(

1
2 ,

1
2

)
. We

indeed compute: |β2,2(cos 3π
19 ) − 1

2 |2 ≈ 0.23 < 1
4 , |R2,7 − 1

2 |2 ≈ 0.23 < 1
4 .

It remains to show that the lower boundaries of M19,7 and M19,13 lie below
⌢

C2C3
in the strip {z | ℜ(z) ∈ [ℜ(z7),ℜ(C3) = 1/2]}.
We have

|β7,1(t) − 1
2 |2 = |β7,3(t) − 1

2 |2 ≤ 1
4 ⇐⇒

f7(t) :=
cos2 5π

38
361 sin2 π

19
t2 +

5 cos 5π
38

361 sin π
19
t− 84

361 +
cos2 π

19 + cos π
19 sin 5π

38 + sin2 5π
38

361 sin2 π
19

≤ 0.

As f7 is non positive on the interval [−1, 1], which contains the domains of β7,1 and
β7,3, we deduce that these two curves lie entirely below

⌢

C2C3.
We then have

|β7,2(t) − 1
2 |2 ≤ 1

4 ⇐⇒ f8(cos t) :=
5 cos 5π

38
361 sin π

19
cos t− 84

361 +
cos2 5π

38
361 sin2 π

19
≤ 0.

Since f8 is non positive on [−1, 1], it follows that f8(cos t) is non positive for all t,
which shows that β7,2 lies below

⌢

C2C3.
Finally, as previously noted, since β13,1 is a line segment, it suffices to show that its
extremities lies below

⌢

C2C3 by concavity. We compute: |z13 − 1
2 |2 ≈ 0.244 < 1

4 and
|w13 − 1

2 | ≈ 0.1 < 1
4 . Thus

⌢

C2C3 lies above β13,1, and as ℜ(w13) ≈ 0.502 > 1
2 = ℜ(C3),

we deduce that
⌢

C2C3 is included in M19.

This ends the proof of Lemma 11.
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Appendix B

Proofs that the planes mentioned in
section 6.5.2 are separating

First recall that the faces Q′
1Q

′
0P

′
1 and P ′

1P
′
2Q

′
1 are coplanar as well as Q′

0Q
′
3P

′
7 and

P ′
7P

′
0Q

′
0.

S ′
0P

′
2Q

′
1 and the other faces: Let

Π0 := (S ′
0P

′
2Q

′
1)

=
{(

ℓ0(x, y, z) :=
(
λ0τ − λ1τ

2 + λ2λ3
)
x+

(
λ2

2 + λ0τ
2 − λ1τ

3
)
y +

(
τ

4 − τ 2

2 λ3

)
z

)
= 0

}
,

where λ0 =
√

3
8+6τ2 , λ1 = 3

√
3
√

1+τ2

16+12τ2 , λ2 =
√

3
2 τ

√
1 + τ 2 and λ3 =

√
3
4 − (2

√
3−3

√
3τ

√
1+τ2)2

(8+6τ2)2 .
Then Π0 separates S ′

0P
′
2Q

′
1 and P ′

2P
′
1Q

′
0Q

′
1. Indeed, we check that

ℓ0(Q′
0) = ℓ0(P ′

1)

=
√

3τ 2

16 + 12τ 2

(
2 + 3

√
1 + τ 2

(
4
√

1
4 + 5τ 2 − 4τ

√
1 + τ 2

+ τ

(
−1 + 3τ

√
1

4 + 5τ 2 − 4τ
√

1 + τ 2

)))
> 0

as 4 + 5τ 2 − 4τ
√

1 + τ 2 < 9τ 2 for all τ .
Let Π1 := (Q′

0Q
′
1Q

′
3) = {z = −

√
3

2

√
a2 + b2}. Then Π1 separates the faces S ′

0P
′
2Q

′
1 and

Q′
0Q

′
1Q

′
3. Indeed, z(S ′

0) = 0 > −
√

3
2

√
a2 + b2 while z(P ′

2) = a sin θ1 > −
√

3
2

√
a2 + b2 is

equivalent to (4 + 3τ 2)(τ + 2
√

1 + τ 2) > 0 which is true for all τ .
Let Π2 := {x = 0}. Then Π2 separates S ′

0P
′
2Q

′
1 from all the remaining faces. Indeed,

those faces have only vertices in the set V0 := {P ′
1, Q

′
0, Q

′
3, S

′
0, P

′
0, P

′
7}. But, we have

x(P ′
2) = x(Q′

1) = −a
2 < 0, S ′

0 ∈ Π2 while x(P ′
1) = x(Q′

0) = x(Q′
3) = a

2 > 0 and
x(P ′

0) = x(P ′
7) = b

√
cos2 θ0 − 1

4 > 0.

S ′
0Q

′
3P

′
7 and the other faces: Let

Π3 := (S ′
0Q

′
3P

′
7)

=
{(

ℓ1(x, y, z) :=
(
λ′

2
2 + λ′

0τ
2 − λ′

1

)
x+

(
λ′

0τ
3 − λ′

1τ + λ′
2λ

′
3

)
y +

(
τ

4 − λ′
3

2

)
z

)
= 0

}
,
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with λ′
0 =

√
3

6+8τ2 , λ′
1 = 3

√
3
√

1+τ2

12+16τ2 , λ′
2 = λ2 =

√
3

2

√
1 + τ 2, λ′

3 =
√

3
4 − (2

√
3τ2−3

√
3
√

1+τ2)2

(6+8τ2)2 .
Then Π3 separates S ′

0Q
′
3P

′
7 and Q′

3Q
′
0P

′
0P

′
7. Indeed, S ′

0, Q
′
3, P

′
7 ∈ Π3 while

ℓ1(Q′
0) = ℓ1(P ′

0)

=
√

3
8

(
6τ

√
1 + τ 2

√
1

5 + 4τ 2 − 4
√

1 + τ 2
+ 4τ 3 − 6τ

√
1 + τ 2

3 + 4τ 2

)
> 0

as 3 + 4τ 2 >
√

5 + 4τ 2 − 4
√

1 + τ 2.
The plane Π1 separates S ′

0Q
′
3P

′
7 from Q′

0Q
′
1Q

′
3. Indeed, Q′

0, Q
′
1, Q

′
3 ∈ Π1 while z(S ′

0) =
0 > −

√
3

2

√
a2 + b2 and z(P ′

7) = b sin(θ0) > −
√

3
2

√
a2 + b2 is equivalent to τ 2(3 + 4τ 2)(1 +

2
√

1 + τ 2) > 0 which is true for all τ .
Finally, the plane Π4 := {y = 0} separates (S ′

0Q
′
3P

′
7) from all the remaining faces.

Indeed, all the other faces have vertices inside the set V1 := {S ′
0, P

′
2, P

′
1, Q

′
1, Q

′
0, P

′
0}.

But, y(Q′
3) = y(P ′

7) = − b
2 < 0, S ′

0 ∈ Π4 while y(P ′
0) = y(Q′

0) = y(Q′
1) = b

2 > 0 and
y(P ′

1) = y(P ′
2) = a

√
cos2 θ1 − 1

4 > 0.

Q′
0Q

′
1Q

′
3 and the other faces: We show that the plane Π1 = (Q′

0Q
′
1Q

′
3) is separating,

by showing that all the vertices distinct from Q′
0, Q

′
1 and Q′

3 are on the same side of Π1.
We indeed already checked that: z(S ′

0) > 0, z(P ′
1) = z(P ′

2) = a sin θ1 > −
√

3
2

√
a2 + b2 and

z(P ′
0) = z(P ′

7) = b sin θ0 > −
√

3
2

√
a2 + b2.

P ′
1P

′
2Q

′
1Q

′
0 and the other faces: Let

Π5 = (P ′
1P

′
2Q

′
1Q

′
0)

=
{(

ℓ2(x, y, z) :=
(
−λ2 − 2λ0τ

2 + 2λ1τ
3
) (

y − 1
2

)
+
(

−τ

2 + τ 2λ3

)(
z +

√
3

2
√

1 + τ 2

))
= 0

}
.

Then Π5 separates P ′
1P

′
2Q

′
1Q

′
0 from Q′

0Q
′
3P

′
7P

′
0. Indeed, P ′

1, P
′
2, Q

′
1, Q

′
0 ∈ Π5. Moreover,

ℓ2(Q′
3) =

√
3τ(τ+2

√
1+τ2)

4+3τ2 > 0, ℓ2(P ′
0) =

√
3τ3(1+2

√
1+τ2)

(
−1+3τ

√
1

4+5τ2−4τ
√

1+τ2

)
6+8τ2 > 0 as 4+5τ 2−

4τ
√

1 + τ 2 < 9τ 2, and ℓ2(P ′
7) =

√
3

2 τ

2τ+4
√

1+τ2

4+3τ2 +
τ2(1+2

√
1+τ2)

(
−1+3 τ√

4+5τ2−4τ
√

1+τ2

)
3+4τ2

 >

0.
Π5 separates also P ′

1P
′
2Q

′
1Q

′
0 from P ′

1Q
′
0S

′
0 and S ′

0Q
′
0P

′
0. Indeed, P ′

1, Q
′
0 ∈ Π5, ℓ2(P ′

0) > 0 as

seen previously and ℓ2(S ′
0) =

√
3τ2

(
2+3

√
1+τ2

(
4√

4+5τ2−4τ
√

1+τ2
+τ
(

−1+3 τ√
4+5τ2−4τ

√
1+τ2

)))
16+12τ2 >

0.

P ′
1Q

′
0S

′
0 and S ′

0Q
′
0P

′
0: We have to check that some determinant is of constant sign,

namely det(Q′
0, P

′
0, P

′
1). After dividing the determinant by ab2

8 , we obtain:

∆ =

∣∣∣∣∣∣∣∣∣
τ

√
3 − 4 sin2 θ0 1

1 1
√

3 − 4 sin2 θ1

−
√

3(1 + τ 2) 2 sin θ0 2 sin θ1

∣∣∣∣∣∣∣∣∣ .
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Let us first do the change of variable x =
√

1 + τ 2. Then we have sin θ0 =
√

3 x−2
4x−2 and

sin θ1 =
√

3−3x
√

−1+x2+2
6x2+2 . The determinant of interest takes then the following shape:

∆ = 2(x2−1)
2x−1 + 2

√
x2−1

2x−1

(
(2−3x

√
x2−1)(x−2)

1+3x2 − 3(x+1)√
5x2−4x

√
x2−1−1

)
. We want to show that ∆ < 0,

that is to say
√
x2−1(6x+1)+2(x−2)

1+3x2 < 3(x+1)√
5x2−4x

√
x2+1−1

. As the two members of the inequality
are positive, we can square the inequality, and obtain:

(1 + 3x2)2
(
−8(−3 +

√
−1 + x2) + (22 − 11x+ 16

√
−1 + x2)x

)
> 0.

It is equivalent to: (16x − 8)
√

−1 + x2 > 11x2 − 22x − 24. Setting f(x) =
√

1 − 1
x2 ,

we have by taking the order two Taylor expansion of f at ∞: 5x2 + 14x + 16 + 4
x

+
x(16x − 8)R2(f)( 1

x
) > 0 where R2(f)( 1

x
) = − 1

8x4 − 1
16x6 − ... is the order two rest in

the Taylor expansion of f at ∞. But R2(f) = R3(f), and we have: |R3(f)| ≤ 1
24x4

by Taylor-Lagrange inequality as |f | ≤ 1. Now the desired inequality is implied by:
5x2 +14x+16+ 4

x
> 16x2+8x

24x4 = 2
3x2 + 1

3x3 which is clearly true for x ≥
√

2 (that corresponds
to τ ≥ 1).

Q′
0Q

′
3P

′
7P

′
0 and the two faces P ′

1Q
′
0S

′
0 and S ′

0Q
′
0P

′
0: We see that the plane (S ′

0Q
′
0P

′
0)

separates at the same time Q′
0Q

′
3P

′
7P

′
0 from P ′

1Q
′
0S

′
0 and S ′

0Q
′
0P

′
0. We have already checked

that, denoting [P ′
0, Q

′
0, X] the determinant of the three vectors

−−→
S ′

0P
′
0,

−−−→
S ′

0Q
′
0 and

−−→
S ′

0X,
[P ′

0, Q
′
0, P

′
1] < 0. It remains to show that [P ′

0, Q
′
0, P

′
7] > 0 and [P ′

0, Q
′
0, Q

′
3] > 0.

Denote by ω := [P ′
0, Q

′
0, P

′
7]. We have:

∆′ = b2

2

∣∣∣∣∣∣∣∣
a

√
3
4 − sin2 θ0

√
3
4 − sin2 θ0

b 1
2 −1

2
−
√

3(a2 + b2) sin θ0 sin θ0

∣∣∣∣∣∣∣∣ = b2

2

a sin θ0 +
√

3(a2 + b2)
√

3
4 − sin2 θ0

 .
Hence:

ω := ∆′

b2/2 = τ sin θ0 +
√

3(1 + τ 2)(3
4 − sin2 θ0).

Using formula (6.6), we deduce that:

ω =
√

3τ
(
2τ 2 − 3

√
1 + τ 2

)
8τ 2 + 6 + 3

2

√
(1 + τ 2)(12τ 4 + 15τ 2 + 12

√
1 + τ 2)

4τ 2 + 3 .

Applying the change of variable x =
√

1 + τ 2 gives us:

ω = 1
8x2 − 2

(√
3(x2 − 1)(2x2 − 3x− 2) + 3x

√
12x4 − 9x2 + 12x− 3

)
.

We easily check that (8x2 − 2)ω is increasing in x, with strictly positive value in x =
√

2
(corresponding to τ = 1). Thus, ω > 0.
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Now, for Q′
3, we compute:

[Q′
0, P

′
0, Q

′
3] = b

∣∣∣∣∣∣∣∣
a

√
3
4 − sin2 θ0 a

b 1
2 −b

−
√

3(a2 + b2) sin θ0 −
√

3(a2 + b2)

∣∣∣∣∣∣∣∣
= 2b2

a sin θ0 +
√

3(a2 + b2)
√

3
4 − sin2 θ0


that is proportional to∆′. Hence, [Q′

0, P
′
0, Q

′
3] > 0, and (S ′

0Q
′
0P

′
0) separates bothQ′

0Q
′
3P

′
7P

′
0

and P ′
1Q

′
0S

′
0 from S ′

0Q
′
0P

′
0.
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Index

Alexandrov’s theorem, 59
atlas

holomorphic, 24
smooth, 24
topological, 13

bending of a right prism along one of its rib,
66

biholomorphism, 28

central and peripheral parallelograms of a
surface in H(2), 11, 96

chart, 13
conformality, 28
conical angle, 23
cotangent bundle, 27
covering space, 17

deck transformation, 17
developping map, 45
diplotorus, 71
Dirichlet region, 37

edge pairing, 15
embedding, 13
Euler’s characteristic, 18

flat torus, 30
flatness, 23
fundamental group, 17
fundamental region, 37
Fuschian group, 37

gasket, 67
genus, 23
geodesic of H2, 35
geometric realization, 95
gluing, 15

helical twist, 68

holomorphic, 24, 25, 28
holomorphic 1-form, 27
homeomorphism, 13
homotopy, 17

immersion, 13

L decomposition of surfaces in H(2), 51
length structure, 14
local coordinates, 13

manifold
complex, 24
smooth, 24
topological, 13
with boundary, 13

mapping class group, 46
meromorphic, 25
metric, 14
modular curve, 37
moduli spaces

of Riemann surfaces, 28, 29
of translation surfaces, 43

Mumford’s compactness criterion, 49
Möbius transformation, 33

orientation, 19

period, 46
PL, 24
polyhedral surfaces, 23
pull-back, 28

quadratic differential, 28
quasi-conformality, 47

Riemann sphere, 33
Riemannian metric, 28

saddle connection, 51
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semi-local simple connectedness, 18
semi-metric, 15
short map, 60
simplicial complex, 16
singularity, 23
strata of moduli spaces of translation sur-

faces, 49
surface

closed, 23
Riemann, 24
smooth, 24
topological, 19

tangent bundle, 27
tangent space, 25
Teichmüller spaces

of Riemann surfaces, 46
of translations surfaces, 45

theorem of Burago and Zalgaller, 60
theorem of classification

of Riemann surfaces, 30
of topological surfaces, 23

transition map
of a manifold, 24
of a vector bundle, 26

translation structure, 43
translation surface, 42
translation surfaces, 42

uniformisation theorem of Riemann surfaces,
29

universal cover, 18

vector bundle, 25
dual, 26
tensor product, 26

vector field, 27

Z decomposition of surfaces in H(1, 1), 51
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Nomenclature

ℑz imaginary part of a complex number z

En Rn endowed with its canonical Euclidean structure

H2 Poincaré’s half-plane

Tτ flat torus with modulus τ : C/ (Z + Zτ)

Da,h
n,d diplotorus of parameter (n, d, a, h)

H(µ = (m1, ...,mn)) Moduli space of translation surfaces with n singularities of order
m1, ...,mn ; typically µ = (2) or µ = (1, 1) in this thesis

Hg moduli space of translation surfaces of genus g

Mg moduli space of closed Riemann surfaces of genus g

Tg Teichmüller space of Riemann surfaces of genus g

M modular curve or moduli space for flat tori, identified with H2/PSL2(Z)

Q(Sg, Z, µ) Teichmüller space of translation surfaces of genus g, set of singularities Z
and multi-index µ representing the orders at singularities

ΦB(ω) period coordinates of the translation surface (Σ,ω) in the homology basis B

π1(X, x) Fundamental group of loops in X based at x

ℜz real part of a complex number z

MCG(Sg) mapping class group of the topological surface of genus g

Ĉ Riemann sphere

X̃ universal cover of a topological space X

f ∗ pull-back morphism associated to a smooth map f

f∗ morphism induced in homology by a continuous map f , or
push-forward morphism associated to a smooth map f

Jzf Jacobian of a map f

Sg closed orientable topological surface of genus g
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